Due to the complex interplay of various meteorological phenomena, simulating weather is a challenging and open research problem. In this contribution, we propose a novel physics-based model that enables simulating weather at interactive rates. By considering atmosphere and pedosphere we can define the hydrologic cycle - and consequently weather - in unprecedented detail. Specifically, our model captures different warm and cold clouds, such as mammatus, hole-punch, multi-layer, and cumulonimbus clouds as well as their dynamic transitions. We also model different precipitation types, such as rain, snow, and graupel by introducing a comprehensive microphysics scheme. The Wegener-Bergeron-Findeisen process is incorporated into our Kessler-type microphysics formulation covering ice crystal growth occurring in mixed-phase clouds. Moreover, we model the water run-off from the ground surface, the infiltration into the soil, and its subsequent evaporation back to the atmosphere. We account for daily temperature changes, as well as heat transfer between pedosphere and atmosphere leading to a complex feedback loop. Our framework enables us to interactively explore various complex weather phenomena. Our results are assessed visually and validated by simulating weatherscapes for various setups covering different precipitation events and environments, by showcasing the hydrologic cycle, and by reproducing common effects such as Foehn winds. We also provide quantitative evaluations creating high-precipitation cumulonimbus clouds by prescribing atmospheric conditions based on infrared satellite observations. With our model we can generate dynamic 3D scenes of weatherscapes with high visual fidelity and even nowcast real weather conditions as simulations by streaming weather data into our framework.
We introduce Dynamic Constrained Grid (DCGrid), a hierarchical and adaptive grid structure for fluid simulation combined with a scheme for effectively managing the grid adaptations. DCGrid is designed to be implemented on the GPU and used in high-performance simulations. Specifically, it allows us to efficiently vary and adjust the grid resolution across the spatial domain and to rapidly evaluate local stencils and individual cells in a GPU implementation. A special feature of DCGrid is that the control of the grid adaption is modeled as an optimization under a constraint on the maximum available memory, which addresses the memory limitations in GPU-based simulation. To further advance the use of DCGrid in high-performance simulations, we complement DCGrid with an efficient scheme for approximating collisions between fluids and static solids on cells with different resolutions. We demonstrate the effectiveness of DCGrid for smoke flows and complex cloud simulations in which terrain-atmosphere interaction requires working with cells of varying resolution and rapidly changing conditions. Finally, we compare the performance of DCGrid to that of alternative adaptive grid structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.