The proline iminopeptidase from Xanthomonas campestris pv. citri is a serine peptidase that catalyses the removal of N-terminal proline residues from peptides with high specificity. We have solved its threedimensional structure by multiple isomorphous replacement and refined it to a crystallographic R-factor of 19.2% using X-ray data to 2.7 Å resolution. The protein is folded into two contiguous domains. The larger domain shows the general topology of the α/β hydrolase fold, with a central eight-stranded β-sheet flanked by two helices and the 11 N-terminal residues on one side, and by four helices on the other side. The smaller domain is placed on top of the larger domain and essentially consists of six helices. The active site, located at the end of a deep pocket at the interface between both domains, includes a catalytic triad of Ser110, Asp266 and His294. Cys269, located at the bottom of the active site very close to the catalytic triad, presumably accounts for the inhibition by thiolspecific reagents. The overall topology of this iminopeptidase is very similar to that of yeast serine carboxypeptidase. The striking secondary structure similarity to human lymphocytic prolyl oligopeptidase and dipeptidyl peptidase IV makes this proline iminopeptidase structure a suitable model for the three-dimensional structure of other peptidases of this family.
The importance of the stabilization of the quaternary structure of multimeric enzymes has been illustrated using a model reaction with great industrial relevance: the enzymatic synthesis of ampicillin from 6-amino penicillanic acid (6APA) and phenylglycine methyl ester (PGM) catalyzed by the tetrameric enzyme alpha-amino acid ester hydrolase from Acetobacter turbidans. The stabilization of the multimeric structure of the enzyme was achieved by multi-subunit immobilization of the enzyme followed by its further solid-phase chemical intersubunit cross-linking with polyfunctional macromolecules (dextran-aldehyde). This stabilized derivative has permitted the study of the reaction under conditions where nonstabilized enzyme molecules tended to dissociate (e.g., absence of phosphate ions). Synthetic yields improved from around 65%, under conditions where the nonstabilized derivative was stable, to around 85% in conditions where only the stabilized derivative could be utilized (40% methanol and absence of phosphate ions). When using high concentrations of PGM, a significant worsening of the reaction performance was detected with a significant decrease in the yields (below 55%, using 50 mM 6APA and PGM). This problem has been sorted out by using a fed-batch reaction system. By addition of PGM continuously to the reaction mixture (to maintain the concentration between 0.5 and 3 mM), 95% of 6-APA could be transformed to antibiotic (47.5 mM) by only using a 20% excess of acylating ester.
The complete nucleotide sequence of the DA07 gene encoding D-amino-acid oxidase (DAAO) in the yeast Rhodotorula gracilis (Rhodosporidium toruloides) ATCC 26217 has been determined. The primary structure of DAAO was deduced from the nucleotide sequence of a cDNA clone that covered the entire amino acid coding sequence. Comparison of cDNA and genomic sequences of DA07 revealed the presence of five introns. Because this is the first gene of strain ATCC 26217 that has been cloned so far, the nucleotide sequences of these introns were compared to those from other fungi. Upstream of the structural gene there was a stretch of C + T-rich DNA similar to that found in the promoter region of a number of yeast genes. The cDNA gene, which encoded a protein of 368 amino acids (molecular mass 40 kDa), was overexpressed in Escherichia coli under the control of the strong lipoprotein promoter. Interestingly, a significant fraction (13-62 %) of the total DAAO activity was recovered in i t s apoenzyme form, the percentage depending on the culture conditions. This fact allowed a rapid purification of the recombinant DAAO by affinity chromatography. The high level of expression achieved in f . coli and the possibility of modifying its catalytic properties by protein engineering provide a new model for the study of this enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.