The Mercurio structural dome is a poorly exposed and complex structure located in the transitional region between the Coahuila Calcareous Platform and the San Pedro El Gallo sector of the Sierra Madre Oriental, Mexico. It is located in the State of Chihuahua, close to the limits with Coahuila and Durango, Mexico. The dome is a circular structure, ~16 km in diameter, that can be seen in air-photos, satellite images, and shaded relief maps, but that has a subtle topographic expression on the ground. As seen in the field, the most conspicuous topographic features in the area are several hills with the morphology of volcanic necks that rise up to 250 m above the surrounding terrain. The deformation fringe of the dome is a series of cuesta-like low hills, less than 30 m high, where a poorly lithified volcano-sedimentary succession (litharenites, polymictic conglomerates, and ignimbrites) is almost completely masked by desert pavement, which is mainly constituted by well-rounded calcareous clasts derived from the Mesozoic sedimentary marine rocks and by less abundant Paleogene volcanic rocks exposed in the region. Inside the dome the following units are exposed: 1) the pre-volcanic basement in a NW-trending, upright, open anticline developed in limestone of the Aurora Formation, 2) a series of hills where is exposed a succession of epiclastic and volcanic rocks, which are similar, in age and lithology, to some facies of the Ahuichila Formation, and 3) a NW-trending dike, exposed at Cerro Dinamita, which is interpreted as an offshoot of the buried subvolcanic body that created the dome. The deformation fringe around the buried intrusive has a quaquaversal array in the bedding and forms a simple monocline-like structure in the NE part of the dome. A set of SE- and NW-trending plunging folds forms the SE and SW portions of the dome, respectively. The NW part of the fringe is nearly completely masked by volcanic rocks, but there is a ~W plunging syncline in the area. Geophysical data show a broad gravimetric high in the region, and there is a distinct aeromagnetic anomaly inside the dome. The morphological expression of the dome lies just east of a NW-trending lineament of gravity and magnetic anomalies, which may be the buried portion of a normal fault shown in geologic maps of the region northwest of the studied area. Another possible cause is an alignment of buried intrusive bodies suggested by the regional aeromagnetic data, a small diorite outcrop south of Sierra El Diablo, and presence of volcanic necks in the northern portion of Sierra Los Alamos. Available geological and geophysical information was used to model a near-surface, irregular intrusive body with variable magnetic susceptibilites. This variation in susceptibilities is consistent with observed differences in rock composition in the exposed volcanic rocks and with evidence that the structure was formed by a bimodal (andesite-rhyolite) magmatic system where mixing/mingling occurred. As a whole, the set of structures is interpreted as a dome formed by forceful magma injection into a previously folded Paleogene volcano-sedimentary succession. U-Pb zircon ages were used to bracket the age of the deformation pulses registered in the rocks. Litharenites from the deformed volcano-sedimentary succession yielded an Ypresian zircon age of ~51 Ma. A tilted, lithic-rich ignimbrite collected near the top of the exposed volcano-sedimentary succession has mean age of 46.4 +0.8/-1.6 Ma, and the Cerro Dinamita dike has a mean age of 29.37 ± 0.24 Ma. Thus, the youngest pulse of Laramide deformation in the area is younger than ~46 Ma and the re-folding, associated with emplacement of the dome occurred at ~29 Ma. Detrital zircon U-Pb ages from Mercurio sandstones suggest dominant sediment sources from plutonic and/or volcanic rocks exposed along western Mexico. Likely subordinate sources are Mesozoic sedimentary rocks in northern and central Mexico. Distribution of detrital zircon U-Pb ages in the studied samples is similar to that documented in sandstones of the Difunta Group at the Parras and La Popa basins, except that older grains (>1.0 Ga), documented in the clastic rocks of these basins, are scarce in the sandstones of the Mercurio area.
Discussions in the literature concerning mechanisms for the emplacement of large volumes of silicic to intermediate composition magmas into the crust have persisted for decades. In addition, the temporal relationships between pluton emplacement and deformation of the crust have long been debated (e.g., Hutton, 1997; Paterson et al., 1998). It is now widely recognized that in orogenic settings magma ascent and pluton emplacement are structurally controlled (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.