The simulation results of surface tension at the liquid-vapor interface are presented for fluids interacting with Lennard Jones and square-well potentials. From the simulation of liquids we have reported [M. González-Melchor et al., J. Chem. Phys. 122, 4503 (2005)] that the components of pressure tensor in parallelepiped boxes are not the same when periodic boundary conditions and small transversal areas are used. This fact creates an artificial oscillatory stress anisotropy in the system with even negative values. By doing direct simulations of interfaces we show in this work that surface tension has also an oscillatory decay at small surface areas; this behavior is opposite to the monotonic decay reported previously for the Lennard Jones fluid. It is shown that for small surface areas, the surface tension of the square-well potential artificially takes negative values and even increases with temperature. The calculated surface tension using a direct simulation of interfaces might have two contributions: one from finite-size effects of interfacial areas due to box geometry and another from the interface. Thus, it is difficult to evaluate the true surface tension of an interface when small surface areas are used. Care has to be taken to use the direct simulation method of interfaces to evaluate the predicted surface tension as a function of interfacial area from capillary-wave theory. The oscillations of surface tension decay faster at temperatures close to the critical point. It is also discussed that a surface area does not show any important effect on coexisting densities, making this method reliable to calculate bulk coexisting properties using small systems.
Molecular dynamics simulations of pure water at the liquid-vapor interface are performed using direct simulation of interfaces in a liquid slab geometry. The effect of intramolecular flexibility on coexisting densities and surface tension is analyzed. The dipole moment profile across the liquid-vapor interface shows different values for the liquid and vapor phases. The flexible model is a polarizable model. This effect is minor for liquid densities and is large for surface tension. The liquid densities increase from 2% at 300 K to 9% at 550 K when the force field is changed from a fully rigid simple point charge extended (SPCE) model to that of a fully flexible model with the same intermolecular interaction parameters. The increases in surface tension at both temperatures are around 11% and 36%, respectively. The calculated properties of the flexible models are closer to the experimental data than those of the rigid SPCE. The effect of the maximum number of reciprocal vectors (h(z) (max)) and the surface area on the calculated properties at 300 K is also analyzed. The coexiting densities are not sensitive to those variables. The surface tension fluctuates with h(z) (max) with an amplitude larger than 10 mN m(-1). The effect of using small interfacial areas is slightly larger than the error in the simulations.
Na-montmorillonite hydrates in presence of ethane molecules are studied by means of hybrid Monte Carlo simulations in the NP(zz)T and muP(zz)T ensembles. The NP(zz)T ensemble allows us to study the interlaminar distance as a function of water and ethane content. These data show clear plateaus for lower ethane contents and mainly for water contents consistent with the formation of a single water layer. In addition, from this ensemble the structure for some of these interlaminar compositions were analyzed. For systems containing few ethane molecules and water enough to complete a single layer, it was observed that ethane mainly situates close to the interlayer midplane and adopts a nearly parallel arrangement to the clay surface. On the other hand, the muP(zz)T ensemble allows us to determine the interlaminar distance and water-ethane content for any specific reservoir. Here, some important findings are the following: the partial exchange of water by ethane molecules that enhances for decreasing the water vapor pressure; the obtention of a practically constant interlaminar space distance as a function of the water vapor pressure; the conservation of ion solvation shells; the enhancement of the water-ethane exchange for burial conditions; and finally, the incapability for a dehydrated clay mineral to swell in a dry and rich ethane atmosphere.
Finite size effects due to periodic boundary conditions are investigated using computer simulations in the canonical ensemble. We study liquids with densities corresponding to typical liquid coexistence densities, and temperatures between the triple and critical points. The components of the pressure tensor are computed in order to analyze the finite size effects arising from the size and geometry of the simulation box. Two different box geometries are considered: cubic and parallelepiped. As expected the pressure tensor is isotropic in cubic boxes, but it becomes anisotropic for small noncubic boxes. We argue this is the origin of the anomalous behavior observed recently in the computation of the surface tension of liquid-vapor interfaces. Otherwise, we find that the bulk pressure is sensitive to the box geometry when small simulation boxes are considered. These observations are general and independent of the model liquid considered. We report results for liquids interacting through short range forces, square well and Lennard-Jones, and also long range Coulombic interactions. The effect that small surface areas have on the surface tension is discussed, and some preliminary results at the liquid vapor-interface for the square well potential are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.