GEROS-ISS stands for GNSS REflectometry, radio occultation, and scatterometry onboard the International Space Station (ISS). It is a scientific experiment, successfully proposed to the European Space Agency in 2011. The experiment as the name indicates will be conducted on the ISS. The main focus of GEROS-ISS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) in L-band for remote sensing of the Earth with a focus to study climate change. Prime mission objectives are the determination of the altimetric sea surface height of the oceans and of the ocean surface mean square slope, which is related to sea roughness and wind speed. These geophysical parameters are derived using reflected GNSS signals (GNSS reflectometry, GNSS-R). Secondary mission goals include atmosphere/ionosphere sounding using refracted GNSS signals (radio occultation, GNSS-RO) and remote sensing of land surfaces using GNSS-R. The GEROS-ISS mission objectives and its design, the current status, and ongoing activities are reviewed and selected scientific and technical results of the GEROS-ISS preparation phase are described.
Abstract:The Synthetic Aperture Interferometric Radiometer Performance Simulator (SAIRPS) is a three-year project sponsored by the European Space Agency (ESA) to develop a completely generic end-to-end performance simulator of arbitrary synthetic aperture interferometric radiometers. This means, on one side, a generic radiative transfer module from 1 to 100 GHz, including land and ocean covers, as well as a fully 3D atmosphere and Faraday ionospheric rotation based on variable TEC. On the other hand, the instrument can have an arbitrary array topology (number of antenna elements, and their time-dependent position and orientation). Receivers' topology can also be modified, starting from a very generic one to connecting and disconnecting subsystems, whose parameters can be individually configured. These parameters can be defined either by mathematical functions or by input data files, including the frequency and temperature dependence. Generic calibration and image reconstruction algorithms that are suitable for arbitrary array topologies have also been implemented, as well as tools to compute the instrument performance metrics, i.e., radiometric accuracy, sensitivity, angular resolution, etc. This manuscript presents the generic architecture of the SAIRPS, the algorithms implemented in the Radiative Transfer Module, and simulation results showing its performance. A companion manuscript (Part II) describes the instrument and calibration modelling, the image reconstruction algorithms, and the validation tests that were performed.
Abstract:The Synthetic Aperture Interferometric Radiometer Performance Simulator (SAIRPS) has been a three-year project sponsored by the European Space Agency (ESA) to develop a completely generic end-to-end performance simulator of arbitrary synthetic aperture interferometric radiometers. In a companion manuscript (Part I), the Radiative Transfer Module used to generate synthetic fully polarimetric brightness temperatures from 1 to 100 GHz, including land and ocean covers, as well as the atmosphere, is described in detail. In this manuscript (Part II), the instrument model, the calibration procedure, and the imaging algorithms are described. The instrument model includes the simulation of the array topology in terms of the number of antenna elements, the time-dependent position and orientation, and the arbitrary receivers' topology which can be modified from a very generic one by connecting and disconnecting subsystems. All the parameters can be, one by one, defined either by mathematical functions or by input data files, including the frequency and temperature dependence. Generic calibration algorithms including an external point source, the flat target transformation, and the two-level correlated noise injection are described. Finally, different image reconstruction algorithms suitable for arbitrary array topologies have also been implemented and tested. Simulation results have been validated and selected results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.