Spectrum management has been identified as a crucial step towards enabling the technology of the cognitive radio network (CRN). Most of the current works dealing with spectrum management in the CRN focus on a single task of the problem, e.g., spectrum sensing, spectrum decision, spectrum sharing or spectrum mobility. In this work, we argue that for certain network configurations, jointly performing several tasks of the spectrum management improves the spectrum efficiency. Specifically, we study the uplink resource management problem in a CRN where there exist multiple cognitive users (CUs) and access points (APs), with each AP operates on a set of nonoverlapping channels. The CUs, in order to maximize their uplink transmission rates, have to associate to a suitable AP (spectrum decision), and to share the channels belong to this AP with other CUs (spectrum sharing). These tasks are clearly interdependent, and the problem of how they should be carried out efficiently and distributedly is still open in the literature.In this work we formulate this joint spectrum decision and spectrum sharing problem into a non-cooperative game, in which the feasible strategy of a player contains a discrete variable and a continuous vector. The structure of the game is hence very different from most non-cooperative spectrum management game proposed in the literature. We provide characterization of the Nash Equilibrium (NE) of this game, and present a set of novel algorithms that allow the CUs to distributively and efficiently select the suitable AP and share the channels with other CUs. Finally, we study the properties of the proposed algorithms as well as their performance via extensive simulations.
We consider the distributed uplink resource allocation problem in a multi-carrier wireless network with multiple access points (APs). Each mobile user can optimize its own transmission rate by selecting a suitable AP and by controlling its transmit power. Our objective is to devise suitable algorithms by which mobile users can jointly perform these tasks in a distributed manner. Our approach relies on a game theoretic formulation of the joint power control and AP selection problem. In the proposed game, each user is a player with an associated strategy containing a discrete variable (the AP selection decision) and a continuous vector (the power allocation among multiple channels). We provide characterizations of the Nash Equilibrium of the proposed game, and present a set of novel algorithms that allow the users to efficiently optimize their rates. Finally, we study the properties of the proposed algorithms as well as their performance via extensive simulations.
Regularization of the level-set (LS) field is a critical part of LS-based topology optimization (TO) approaches. Traditionally this is achieved by advancing the LS field through the solution of a Hamilton-Jacobi equation combined with a reinitialization scheme. This approach, however, may limit the maximum step size and introduces discontinuities in the design process. Alternatively, energy functionals and intermediate LS value penalizations have been proposed. This paper introduces a novel LS regularization approach based on a signed distance field (SDF) which is applicable to explicit LSbased TO. The SDF is obtained using the heat method (HM) and is reconstructed for every design in the optimization process. The governing equations of the HM, as well as the ones describing the physical response of the system of interest, are discretized by the extended finite element method (XFEM). Numerical examples for problems modeled by linear elasticity, nonlinear hyperelasticity and the incompressible Navier-Stokes equations in two and three dimensions are presented to show the applicability of the proposed scheme to a broad range of design optimization problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.