Botrytis cinerea causes substantial losses in tomato and chili pepper crops worldwide. Endophytes have shown the potential for the biological control of diseases. The colonization ability of native endophyte strains of Beauveria bassiana and their antifungal effect against B. cinerea were evaluated in Solanaceae crops. Root drenching with B. bassiana was applied, and endophytic colonization capacity in roots, stems, and leaves was determined. The antagonistic activity was evaluated using in vitro dual culture and also plants by drenching the endophyte on the root and by pathogen inoculation in the leaves. Ten native strains were endophytes of tomato, and eight were endophytes of chili pepper. All strains showed significant in vitro antagonism against B. cinerea (30–36%). A high antifungal effect was observed, and strains RGM547 and RGM644 showed the lowest percentage of the surface affected by the pathogen. Native strains of B. bassiana colonized tomato and chili pepper tissues and provided important levels of antagonism against B. cinerea.
Silverleaf caused by the basidiomycete Chondrostereum purpureum affects numerous woody species, including fruit tree crops like apple, resulting in wood necrosis and foliar silvering. There are no curative alternatives for this disease, and its management is by prevention methods. Therefore, the aim of this study was to develop a rapid diagnostic tool for the detection and identification of C. purpureum directly from woody tissues to help distinguish the pathogen from other basidiomycetes that are commonly found on apple. The silverleaf pathogen was isolated from different hosts and locations, and Koch’s postulates were performed by inoculating the isolates on apple cuttings and measuring internal necrosis. A previously described APN 1 pair of primers specificity was also tested against 25 C. purpureum isolates in this study, using other wood rotting species as negative controls. Seven virulent isolates were inoculated on apple cuttings, and DNA was extracted from the cuttings’ sawdust and amplified using APN 1, after 22 days of incubation. To prove the efficiency of the method in the field, DNA from healthy nursery plants inoculated with two virulent isolates, and naturally infected plants showing different levels of foliar symptoms, were tested. Presence of the fungus was verified by reisolation on APDA in all assays. Koch’s postulates indicated that all C. purpureum isolates were pathogenic, showing different virulence levels, and APN 1 primers were able to discriminate them from other basidiomycetes. The method was also able to detect C. purpureum from artificially inoculated plants as well as naturally infected ones, demonstrating that the protocol may become a rapid minimally destructive diagnostic tool to detect the pathogen without the need to isolate it from tissues, and thus taking measures to prevent its dissemination.
Novel species of fungi described in this study include those from various countries as follows: Argentina, Colletotrichum araujiae on leaves, stems and fruits of Araujia hortorum. Australia, Agaricus pateritonsus on soil, Curvularia fraserae on dying leaf of Bothriochloa insculpta, Curvularia millisiae from yellowing leaf tips of Cyperus aromaticus, Marasmius brunneolorobustus on well-rotted wood, Nigrospora cooperae from necrotic leaf of Heteropogon contortus, Penicillium tealii from the body of a dead spider, Pseudocercospora robertsiorum from leaf spots of Senna tora, Talaromyces atkinsoniae from gills of Marasmius crinis-equi and Zasmidium pearceae from leaf spots of Smilax glyciphylla. Brazil, Preussia bezerrensis from air. Chile, Paraconiothyrium kelleni from the rhizosphere of Fragaria chiloensis subsp. chiloensis f. chiloensis. Finland, Inocybe udicola on soil in mixed forest with Betula pendula, Populus tremula, Picea abies and Alnus incana. France, Myrmecridium normannianum on dead culm of unidentified Poaceae. Germany, Vexillomyces fraxinicola from symptomless stem wood of Fraxinus excelsior. India, Diaporthe limoniae on infected fruit of Limonia acidissima, Didymella naikii on leaves of Cajanus cajan, and Fulvifomes mangroviensis on basal trunk of Aegiceras corniculatum. Indonesia, Penicillium ezekielii from Zea mays kernels. Namibia, Neocamarosporium calicoremae and Neocladosporium calicoremae on stems of Calicorema capitata, and Pleiochaeta adenolobi on symptomatic leaves of Adenolobus pechuelii. Netherlands, Chalara pteridii on stems of Pteridium aquilinum, Neomackenziella juncicola (incl. Neomackenziella gen. nov.) and Sporidesmiella junci from dead culms of Juncus effusus. Pakistan, Inocybe longistipitata on soil in a Quercus forest. Poland, Phytophthora viadrina from rhizosphere soil of Quercus robur, and Septoria krystynae on leaf spots of Viscum album. Portugal (Azores), Acrogenospora stellata on dead wood or bark. South Africa, Phyllactinia greyiae on leaves of Greyia sutherlandii and Punctelia anae on bark of Vachellia karroo. Spain, Anteaglonium lusitanicum on decaying wood of Prunus lusitanica subsp. lusitanica, Hawksworthiomyces riparius from fluvial sediments, Lophiostoma carabassense endophytic in roots of Limbarda crithmoides, and Tuber mohedanoi from calcareus soils. Spain (Canary Islands), Mycena laurisilvae on stumps and woody debris. Sweden, Elaphomyces geminus from soil under Quercus robur. Thailand, Lactifluus chiangraiensis on soil under Pinus merkusii, Lactifluus nakhonphanomensis and Xerocomus sisongkhramensis on soil under Dipterocarpus trees. Ukraine, Valsonectria robiniae on dead twigs of Robinia hispida. USA, Spiralomyces americanus (incl. Spiralomyces gen. nov.) from office air. Morphological and culture characteristics are supported by DNA barcodes.
We describe the first identification of Gnomoniopsis smithogilvyi causing brown rot on chestnut fruits in Chile, with an incidence of 4.8%. Previously, Phomopsis castanea (IMI 278057) was reported as the cause of the disease in Chile, but a molecular re-identification revealed that it corresponded to G. smithogilvyi. All chestnut fruits inoculated with the isolate G. smithogilvyi RGM 2903 developed brown rot symptoms on fruits.
Robinson Crusoe Island, Chile, has one of the highest densities of endemic plants in the world, however many of its native and endemic species, such as Solanum fernandezianum Phil., are currently declared endangered. Coating the seeds of native plants with locally sourced plant-growth-promoting bacteria can be used as a tool for conservation programs of endangered plant species. Isolation and screening of rhizosphere bacteria from Robinson Crusoe Island resulted in the selection of three bacteria: Serratia sp. RGM 2525, Raoultella sp. RGM 2526, and Pseudomonas sp. RGM 2607, due to their capacity of producing indole compounds (30-45 μL mL -1 ) and indoleacetic acid (IAA) (5-10 μg mL -1 ). The effect of these strains on the seed germination rate of S. fernandezianum was evaluated under five treatments: individual inoculation of each bacteria, inoculation of a mixture of the three bacteria and a treatment without bacteria (control). Inoculation of bacteria improved the seed germination rate of S. fernandezianum compared to the control treatment, with the bacterial mix as the best treatment with 26.9% germination (p < 0.05), 10.2% higher than control. Bioinoculants formulated with bacteria isolated from rhizosphere soils could improve the seed germination rate of the endangered plant S. fernandezianum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.