We present a method for reducing the phase flicker originated by the pulsed modulation of a Liquid Crystal on Silicon (LCoS) Spatial Light Modulator (SLM). It consists in reducing the temperature of the LCoS in a controlled way, in order to increase the viscosity of the liquid crystal. By doing this, we increase the time response of the liquid crystal, and thus reduce the amplitude of phase fluctuations. We evaluate the efficacy of this method quantifying the temporal evolution of phase shift using an experiment that is insensitive to optical polarization fluctuations. Additionally, we determine the effect of the temperature reduction on the effective phase modulation capability of the LCoS. We demonstrate that a reduction of up to 80% of the flicker initial value can be achieved when the LCoS is brought to -8 °C.
From generalized phase-shifting equations, we propose a simple linear system analysis for algorithms with equally and nonequally spaced phase shifts. The presence of a finite number of harmonic components in the fringes of the intensity patterns is taken into account to obtain algorithms insensitive to these harmonics. The insensitivity to detuning for the fundamental frequency is also considered as part of the description of this study. Linear systems are employed to recover the desired insensitivity properties that can compensate linear phase shift errors. The analysis of the wrapped phase equation is carried out in the Fourier frequency domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.