The tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern
Abstract:The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO-Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.
[1] El Niño influence on the Euro-Mediterranean Rainfall (EMedR) has changed along the 20th century, and the reasons for this lack of stationarity, which represents an important issue in the climate change context, are still unclear. Here, the causes of this changing relationship are studied at interannual timescales. To this aim the EMedR is analyzed using observations from 1900 to 2008. Results confirm the lack of stationarity, showing how the teleconnections with El Niño appear modulated by multidecadal oscillations of the anomalous Sea Surface Temperature (SST) over the Atlantic and Pacific basins. The study presents statistically significant evidences about how the Atlantic Multidecadal Oscillation (AMO) seems to modulate El Niño teleconnection for late winter-spring, while modulation in fall could be controlled by the Pacific Decadal Oscillation (PDO). The results of this study have important implications in seasonal and decadal predictability, but they also represent a step forward in the understanding of the role of changes in the ocean mean state on the interannual teleconnections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.