Hyper-heuristics aim at interchanging different solvers while solving a problem. The idea is to determine the best approach for solving a problem at its current state. This way, every time we make a move it gets us closer to a solution. The problem changes; so does its state. As a consequence, for the next move, a different solver may be invoked. Hyper-heuristics have been around for almost 20 years. However, combinatorial optimization problems date from way back. Thus, it is paramount to determine whether the efforts revolving around hyper-heuristic research have been targeted at the problems of the highest interest for the combinatorial optimization community. In this work, we tackle such an endeavor. We begin by determining the most relevant combinatorial optimization problems, and then we analyze them in the context of hyper-heuristics. The idea is to verify whether they remain as relevant when considering exclusively works related to hyper-heuristics. We find that some of the most relevant problem domains have also been popular for hyper-heuristics research. Alas, others have not and few efforts have been directed towards solving them. We identify the following problem domains, which may help in furthering the impact of hyper-heuristics: Shortest Path, Set Cover, Longest Path, and Minimum Spanning Tree. We believe that focusing research on ways for solving them may lead to an increase in the relevance and impact that hyperheuristics have on combinatorial optimization problems.
Metaheuristics have become a widely used approach for solving a variety of practical problems. The literature is full of diverse metaheuristics based on outstanding ideas and with proven excellent capabilities. Nonetheless, oftentimes metaheuristics claim novelty when they are just recombining elements from other methods. Hence, the need for a standard metaheuristic model is vital to stop the current frenetic tendency of proposing methods chiefly based on their inspirational source. This work introduces a first step to a generalised and mathematically formal metaheuristic model, which can be used for studying and improving them. This model is based on a scheme of simple heuristics, which perform as building blocks that can be modified depending on the application. For this purpose, we define and detail all components and concepts of a metaheuristic (i.e., its search operators), such as heuristics. Furthermore, we also provide some ideas to take into account for exploring other search operator configurations in the future. To illustrate the proposed model, we analyse search operators from four well-known metaheuristics employed in continuous optimisation problems as a proof-of-concept. From them, we derive 20 different approaches and use them for solving some benchmark functions with different landscapes. Data show the remarkable capability of our methodology for building metaheuristics and detecting which operator to choose depending on the problem to solve. Moreover, we outline and discuss several future extensions of this model to various problem and solver domains.
Advances in the field of Brain-Computer Interfaces (BCIs) aim, among other applications, to improve the movement capacities of people suffering from the loss of motor skills. The main challenge in this area is to achieve real-time and accurate bio-signal processing for pattern recognition, especially in Motor Imagery (MI). The significant interaction between brain signals and controllable machines requires instantaneous brain data decoding. In this study, an embedded BCI system based on fist MI signals is developed. It uses an Emotiv EPOC+ Brainwear®, an Altera SoCKit® development board, and a hexapod robot for testing locomotion imagery commands. The system is tested to detect the imagined movements of closing and opening the left and right hand to control the robot locomotion. Electroencephalogram (EEG) signals associated with the motion tasks are sensed on the human sensorimotor cortex. Next, the SoCKit processes the data to identify the commands allowing the controlled robot locomotion. The classification of MI-EEG signals from the F3, F4, FC5, and FC6 sensors is performed using a hybrid architecture of Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. This method takes advantage of the deep learning recognition model to develop a real-time embedded BCI system, where signal processing must be seamless and precise. The proposed method is evaluated using k-fold cross-validation on both created and public Scientific-Data datasets. Our dataset is comprised of 2400 trials obtained from four test subjects, lasting three seconds of closing and opening fist movement imagination. The recognition tasks reach 84.69% and 79.2% accuracy using our data and a state-of-the-art dataset, respectively. Numerical results support that the motor imagery EEG signals can be successfully applied in BCI systems to control mobile robots and related applications such as intelligent vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.