Crime generates significant losses, both human and economic. Every year, billions of dollars are lost due to attacks, crimes, and scams. Surveillance video camera networks generate vast amounts of data, and the surveillance staff cannot process all the information in real-time. Human sight has critical limitations. Among those limitations, visual focus is one of the most critical when dealing with surveillance. For example, in a surveillance room, a crime can occur in a different screen segment or on a distinct monitor, and the surveillance staff may overlook it. Our proposal focuses on shoplifting crimes by analyzing situations that an average person will consider as typical conditions, but may eventually lead to a crime. While other approaches identify the crime itself, we instead model suspicious behavior—the one that may occur before the build-up phase of a crime—by detecting precise segments of a video with a high probability of containing a shoplifting crime. By doing so, we provide the staff with more opportunities to act and prevent crime. We implemented a 3DCNN model as a video feature extractor and tested its performance on a dataset composed of daily action and shoplifting samples. The results are encouraging as the model correctly classifies suspicious behavior in most of the scenarios where it was tested. For example, when classifying suspicious behavior, the best model generated in this work obtains precision and recall values of 0.8571 and 1 in one of the test scenarios, respectively.
Hyper-heuristics aim at interchanging different solvers while solving a problem. The idea is to determine the best approach for solving a problem at its current state. This way, every time we make a move it gets us closer to a solution. The problem changes; so does its state. As a consequence, for the next move, a different solver may be invoked. Hyper-heuristics have been around for almost 20 years. However, combinatorial optimization problems date from way back. Thus, it is paramount to determine whether the efforts revolving around hyper-heuristic research have been targeted at the problems of the highest interest for the combinatorial optimization community. In this work, we tackle such an endeavor. We begin by determining the most relevant combinatorial optimization problems, and then we analyze them in the context of hyper-heuristics. The idea is to verify whether they remain as relevant when considering exclusively works related to hyper-heuristics. We find that some of the most relevant problem domains have also been popular for hyper-heuristics research. Alas, others have not and few efforts have been directed towards solving them. We identify the following problem domains, which may help in furthering the impact of hyper-heuristics: Shortest Path, Set Cover, Longest Path, and Minimum Spanning Tree. We believe that focusing research on ways for solving them may lead to an increase in the relevance and impact that hyperheuristics have on combinatorial optimization problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.