Johansen’s Cointegration Test (JCT) performs remarkably well in finding stable bivariate cointegration relationships. Nonetheless, the JCT is not necessarily designed to detect such relationships in presence of non-linear patterns such as structural breaks or cycles that fall in the low frequency portion of the spectrum. Seasonal adjustment procedures might not detect such non-linear patterns, and thus, we expose the difficulty in identifying cointegrating relations under the traditional use of JCT. Within several Monte Carlo experiments, we show that wavelets can empower more the JCT framework than the traditional seasonal adjustment methodologies, allowing for identification of hidden cointegrating relationships. Moreover, we confirm these results using seasonally adjusted time series as US consumption and income, gross national product (GNP) and money supply M1 and GNP and M2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.