High-fat feeding in rodents leads to metabolic abnormalities mimicking the human metabolic syndrome, including obesity and insulin resistance. These metabolic diseases are associated with altered temporal organization of many physiological functions. The master circadian clock located in the suprachiasmatic nuclei controls most physiological functions and metabolic processes. Furthermore, under certain conditions of feeding (hypocaloric diet), metabolic cues are capable of altering the suprachiasmatic clock's responses to light. To determine whether high-fat feeding (hypercaloric diet) can also affect resetting properties of the suprachiasmatic clock, we investigated photic synchronization in mice fed a high-fat or chow (low-fat) diet for 3 months, using wheel-running activity and body temperature rhythms as daily phase markers (i.e. suprachiasmatic clock's hands). Compared with the control diet, mice fed with the high-fat diet exhibited increased body mass index, hyperleptinaemia, higher blood glucose, and increased insulinaemia. Concomitantly, high-fat feeding led to impaired adjustment to local time by photic resetting. At the behavioural and physiological levels, these alterations include slower rate of re-entrainment of behavioural and body temperature rhythms after 'jet-lag' test (6 h advanced light-dark cycle) and reduced phase-advancing responses to light. At a molecular level, light-induced phase shifts have been correlated, within suprachiasmatic cells, with a high induction of c-FOS, the protein product of immediate early gene c-fos, and phosphorylation of the extracellular signal-regulated kinases I/II (P-ERK). In mice fed a high-fat diet, photic induction of both c-FOS and P-ERK in the suprachiasmatic nuclei was markedly reduced. Taken together, the present data demonstrate that high-fat feeding modifies circadian synchronization to light.
IIM is the PL with highest risk to progress to GC. Sub-typing of IM is a valid procedure for the identification of high risk patients that require more intensive surveillance.
Digestive and metabolic processes are entrained by restricted feeding (RFS) schedules and are thought to be potential elements of a food-entrained oscillator (FEO). Due to the close relationship of leptin with metabolic regulation and because leptin is a relevant communication signal of the individual's peripheral metabolic condition with the central nervous system, we explored whether leptin is an endogenous entraining signal from the periphery to a central element of an FEO. First we characterized in the rat the diurnal rhythm of serum leptin (in rats fed ad libitum (AL)), its adjustment to an RFS and the influence of fasting after RFS, or RFS followed by AL feeding and then total food deprivation (RF-AF) in the persistence of this fluctuating pattern. We also explored the response of free fatty acids and stomach weight under the same entraining conditions. We compared the metabolic response with the behavioral expression of drinking anticipatory activity (AA) under the same conditions. Finally, we tested the effect of daily i.c.v administration of leptin as a putative entraining signal for the generation of AA.Metabolic parameters responded to food entrainment by adjusting their phase to mealtime. However, leptin and free fatty acid rhythms persisted only for a few cycles in fasting conditions and readjusted to the light-darkness cycle after an RF-AF protocol. In contrast, behavioral food-entrained rhythms persisted after both fasting manipulations. Daily leptin i.c.v. administration did not produce AA, nor produce changes in the behavioral free-running rhythm. Stomach weight indicated an adaptive process allowing an extreme stomach distension followed by a slow emptying process, which suggests that the stomach may be playing a relevant role as a storage organ.In conclusion, metabolic signals here studied respond to feeding schedules by adjusting their phase to mealtime, but do only persist for a few cycles in fasting. Leptin does not produce AA and thus is not an entraining signal for FEO. The response of metabolic signals to feeding schedules depends on different mechanisms than the expression of AA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.