Forecasting the hourly spot price of day-ahead and intraday markets is particularly challenging in electric power systems characterized by high installed capacity of renewable energy technologies. In particular, periods with low and high price levels are difficult to predict due to a limited number of representative cases in the historical dataset, which leads to forecast bias problems and wide forecast intervals. Moreover, these markets also require the inclusion of multiple explanatory variables, which increases the complexity of the model without guaranteeing a forecasting skill improvement. This paper explores information from daily futures contract trading and forecast of the daily average spot price to correct point and probabilistic forecasting bias. It also shows that an adequate choice of explanatory variables and use of simple models like linear quantile regression can lead to highly accurate spot price point and probabilistic forecasts. In terms of point forecast, the mean absolute error was 3.03 e/MWh for day-ahead market and a maximum value of 2.53 e/MWh was obtained for intraday session 6. The probabilistic forecast results show sharp forecast intervals and deviations from perfect calibration below 7% for all market sessions.
Urban wastewater sector is being pushed to optimize processes in order to reduce energy consumption without compromising its quality standards. Energy costs can represent a significant share of the global operational costs (between 50% and 60%) in an intensive energy consumer. Pumping is the largest consumer of electrical energy in a wastewater treatment plant. Thus, the optimal control of pump units can help the utilities to decrease operational costs. This work describes an innovative predictive control policy for wastewater variable-frequency pumps that minimize electrical energy consumption, considering uncertainty forecasts for wastewater intake rate and information collected by sensors accessible through the Supervisory Control and Data Acquisition system. The proposed control method combines statistical learning (regression and predictive models) and deep reinforcement learning (Proximal Policy Optimization). The following main original contributions are produced: i) model-free and data-driven predictive control;ii) control philosophy focused on operating the tank with a variable wastewater setpoint level; iii) use of supervised learning to generate synthetic data for pre-training the reinforcement learning policy, without the need to physically interact with the system.The results for a real case-study during 90 days show a 16.7% decrease in electrical energy consumption while still achieving a 97% reduction in the number of alarms (tank level above 7.2 meters) when compared with the current operating scenario (operating with a fixed set-point level). The numerical analysis showed that the proposed data-driven method is able to explore the trade-off between number of alarms and consumption minimization, offering different options to decision-makers.
Photovoltaic (PV) solar power capacity is growing in several countries, either concentrated in medium/large size solar parks or distributed by the medium and low voltage grid. Solar power forecasting is a key input for supporting grid management, participation in the electricity market and maintenance planning. This paper proposes a new forecasting system that is a hybrid of different models, such as electrical and statistical models, as well as different Numerical Weather Prediction (NWP) sources. The time horizon is 48 hours ahead. The proposed model was operationalized and tested in a real PV installation located in North Portugal with 16 kW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.