Our study demonstrates that decision support tools based on the integration of multiple-source data and visual and predictive analytics do improve the management of a chronic disease such as type 2 diabetes by enacting a successful implementation of the learning health care system cycle.
One of the main challenges for the implementation of artificial intelligence (AI) in agriculture includes the low replicability and the corresponding difficulty in systematic data gathering, as no two fields are exactly alike. Therefore, the comparison of several pilot experiments in different fields, weather conditions and farming techniques enhances the collective knowledge. Thus, this work provides a summary of the most recent research activities in the form of research projects implemented and validated by the authors in several European countries, with the objective of presenting the already achieved results, the current investigations and the still open technical challenges. As an overall conclusion, it can be mentioned that even though in their primary stages in some cases, AI technologies improve decision support at farm level, monitoring conditions and optimizing production to allow farmers to apply the optimal number of inputs for each crop, thereby boosting yields and reducing water use and greenhouse gas emissions. Future extensions of this work will include new concepts based on autonomous and intelligent robots for plant and soil sample retrieval, and effective livestock management.
Background To understand user needs, system requirements and organizational conditions towards successful design and adoption of Clinical Decision Support Systems for Type 2 Diabetes (T2D) care built on top of computerized risk models. Methods The holistic and evidence-based CEHRES Roadmap , used to create eHealth solutions through participatory development approach, persuasive design techniques and business modelling, was adopted in the MOSAIC project to define the sequence of multidisciplinary methods organized in three phases, user needs , implementation and evaluation . The research was qualitative, the total number of participants was ninety, about five-seventeen involved in each round of experiment. Results Prediction models for the onset of T2D are built on clinical studies, while for T2D care are derived from healthcare registries. Accordingly, two set of DSSs were defined: the first, T2D Screening , introduces a novel routine; in the second case, T2D Care , DSSs can support managers at population level, and daily practitioners at individual level. In the user needs phase , T2D Screening and solution T2D Care at population level share similar priorities, as both deal with risk-stratification. End-users of T2D Screening and solution T2D Care at individual level prioritize easiness of use and satisfaction, while managers prefer the tools to be available every time and everywhere. In the implementation phase , three Use Cases were defined for T2D Screening , adapting the tool to different settings and granularity of information. Two Use Cases were defined around solutions T2D Care at population and T2D Care at individual , to be used in primary or secondary care. Suitable filtering options were equipped with “attractive” visual analytics to focus the attention of end-users on specific parameters and events. In the evaluation phase , good levels of user experience versus bad level of usability suggest that end-users of T2D Screening perceived the potential, but they are worried about complexity. Usability and user experience were above acceptable thresholds for T2D Care at population and T2D Care at individual . Conclusions By using a holistic approach, we have been able to understand user needs, behaviours and interactions and give new insights in the definition of effective Decision Support Systems to deal with the complexity of T2D care. Electronic supplementary material T...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.