Three-independent-gate field-effect transistors (TIGFETs) are a promising next-generation device technology. Their controllable-polarity capability allows for superior design of arithmetic and sequential logic gates. In this paper, the TIGFET technology has been benchmarked against several beyond-CMOS devices. The benchmarking techniques followed a similar approach used by the Nanoelectronic Research Initiative Group. The performance of the 32-bit adder and the 32-bit arithmetic logic unit (ALU) was investigated using the advanced 15-nm technology node. The TIGFET devices were shown to achieve the best energy-delay product (EDP) compared with all other beyond-CMOS devices for the 32-bit adder and competitive EDP for the 32-bit ALU. In particular, TIGFETs have 3.83 times and 1.54 times lower EDP than CMOS high-performance (HP) for the 32-bit adder and the 32-bit ALU, respectively. In addition, TIGFETs were shown to have a similar throughput for the 32-bit ALU compared with CMOS HP. Finally, due to TIGFETs' ultralow leakage current and unique circuit designs, our results show that the standby energy of the 32-bit adder decreased by two orders of magnitude compared with CMOS HP and a decrease of at least one order of magnitude compared with CMOS low-voltage.INDEX TERMS Arithmetic logic gate, beyond-CMOS, gate-all-around, silicon nanowire field-effect transistor (SiNWFET), three-independent-gate.
Three-Independent-Gate Field-Effect Transistors (TIGFETs) are a promising alternative technology that aims to replace or complement CMOS at advanced technology nodes. In this paper, we extracted the parasitic and intrinsic capacitances of a silicon-nanowire TIGFET device using three-dimensional numerical simulations in an attempt to accurately compare its capacitances and, consequently, circuitlevel performances to CMOS at comparable nodes. Analytical models of the parasitic capacitances of a TIGFET transistor were derived using techniques such as the equivalent Schwarz-Christoffel transformation and standard cylindrical capacitors and show close agreement with numerical simulations. The maximum capacitance of a TIGFET transistor is 2× larger than for a 15 nm CMOS High Performance (HP) device due to the TIGFET's two additional gated contacts, but this is countered by its ability for multiple modes of operation which reduces the effective switching capacitance per device. A TIGFET transistor sees, on average, only a 30% increase in total capacitance compared to a CMOS HP device. Additionally, the TIGFET's increased device functionality can be used to modify the circuit-level architecture of a TIGFET-based design to mitigate the performance impact of its larger device-level capacitance. This combination of a TIGFET's (1) multiple modes of operation, and (2) circuit-level architecture lead to enhanced system performance. In particular, we show that at the 15 nm technology node TIGFET technology has 18% lower energy-delay product for a fan-out of 4 and higher when using 1-bit full-adder logic circuit than for the equivalent node CMOS HP.INDEX TERMS Gate all-around, parasitic capacitance, silicon nanowire FET, Schwarz-Christoffel transformation, three-independent-gate field-effect transistor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.