Pure Split-Sphere RMSE: 0.0901 Reference Reference (Irradiance) Bounded Split-Sphere RMSE: 0.0290 Radiometric Hessian RMSE: 0.0912 Geometric Hessian RMSE: 0.0105 Occlusion Hessian RMSE: 0.0071 Figure 1: Our new Occlusion Hessian significantly outperforms both the Pure and the Bounded Split-Sphere (clamped to the gradient and 150px max spacing) for irradiance caching. It also performs significantly better than the recently published occlusion-unaware Hessian error metrics by Jarosz et al. [2012]. AbstractThis paper introduces a new error metric for irradiance caching that significantly outperforms the classic Split-Sphere heuristic. Our new error metric builds on recent work using second order gradients (Hessians) as a principled error bound for the irradiance. We add occlusion information to the Hessian computation, which greatly improves the accuracy of the Hessian in complex scenes, and this makes it possible for the first time to use a radiometric error metric for irradiance caching. We enhance the metric making it based on the relative error in the irradiance as well as robust in the presence of black occluders. The resulting error metric is efficient to compute, numerically robust, supports elliptical error bounds and arbitrary hemispherical sample distributions, and unlike the SplitSphere heuristic it is not necessary to arbitrarily clamp the computed error thresholds. Our results demonstrate that the new error metric outperforms existing error metrics based on the Split-Sphere model and occlusion-unaware Hessians.
The Manuka rendering architecture has been designed in the spirit of the classic reyes rendering architecture: to enable the creation of visually rich computer generated imagery for visual effects in movie production. Following in the footsteps of reyes over the past 30 years, this means supporting extremely complex geometry, texturing, and shading. In the current generation of renderers, it is essential to support very accurate global illumination as a means to naturally tie together different assets in a picture. This is commonly achieved with Monte Carlo path tracing, using a paradigm often called shade on hit , in which the renderer alternates tracing rays with running shaders on the various ray hits. The shaders take the role of generating the inputs of the local material structure, which is then used by path-sampling logic to evaluate contributions and to inform what further rays to cast through the scene. We propose a shade before hit paradigm instead and minimise I/O strain on the system, leveraging locality of reference by running pattern generation shaders before we execute light transport simulation by path sampling. We describe a full architecture built around this approach, featuring spectral light transport and a flexible implementation of multiple importance sampling ( mis ), resulting in a system able to support a comparable amount of extensibility to what made the reyes rendering architecture successful over many decades.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.