The study of patterns of urban mobility is of utter importance for city growth projection and development planning. In this paper, we analyze the topological aspects of the street network of the coastal city of Cartagena de Indias employing graph theory and spatial syntax tools. We find that the resulting network can be understood on the basis of 400 years of the city’s history and its peripheral location that strongly influenced and shaped the growth of the city, and that the statistical properties of the network resemble those of self-organized cities. Moreover, we study the mobility through the network using a simple agent-based model that allows us to study the level of street congestion depending on the agents’ knowledge of the traffic while they travel through the network. We found that a purely shortest-path travel scheme is not an optimal strategy and that assigning small weights to traffic avoidance schemes increases the overall performance of the agents in terms of arrival success, occupancy of the streets, and traffic accumulation. Finally, we argue that localized congestion can be only partially ascribed to topological properties of the network and that it is important to consider the decision-making capability of the agents while moving through the network to explain the emergence of traffic congestion in the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.