These results imply that successful impulse inhibition involves interaction between the impulsive and the emotional systems. Furthermore, impulsivity in BPD is described as rash impulsivity, coexisting with increased SP.
Uncertainty is recognized as an important component in distress, which may elicit impulsive behavior in patients with borderline personality disorder (BPD). These patients are known to be both impulsive and distress intolerant. The present study explored the connection between outcome uncertainty and impulsivity in BPD. The prediction was that cue primes, which provide incomplete information of subsequent target stimuli, led BPD patients to overrate the predictive value of these cues in order to reduce distress related to outcome uncertainty. This would yield dysfunctional impulsive behavior detected as commission errors to incorrectly primed targets. We hypothesized that dysfunctional impulsivity would be accompanied by aberrant brain activity in the right insula and anterior cingulate cortex (ACC), previously described to be involved in uncertainty processing, attention-/cognitive control and BPD pathology. 14 female BPD patients and 14 healthy matched controls (HCs) for comparison completed a Posner task during fMRI at 3T. The task was modified to limit the effect of spatial orientation and enhance the effect of conscious expectations. Brain activity was monitored in the priming phase where the effects of cue primes and neutral primes were compared. As predicted, the BPD group made significantly more commission errors to incorrectly primed targets than HCs. Also, the patients had faster reaction times to correctly primed targets relative to targets preceded by neutral primes. The BPD group had decreased activity in the right mid insula and increased activity in bilateral dorsal ACC during cue primes. The results indicate that strong expectations induced by cue primes led to reduced uncertainty, increased response readiness, and ultimately, dysfunctional impulsivity in BPD patients. We suggest that outcome uncertainty may be an important component in distress related impulsivity in BPD.
a b s t r a c tThe Reinforcement Sensitivity Theory proposes that the Behavioral Approach System (BAS) comprises dopaminergic brain regions and underpins reward sensitivity causing impulsivity. It has been shown in a supraliminal priming task that highly reward sensitive subjects have a larger reaction time (RT) priming effect and make more commission errors to prime-incongruent targets. We adapted a similar task to event-related fMRI and hypothesized that (1) high reward sensitivity is associated with increased activation in dopaminergic brain regions, the ventral striatum in particular, (2) that BAS related personality traits predict impulsivity and (3) that the BAS effects are larger after adjusting for the interactive influence of trait avoidance, as predicted by the Joint Subsystems Hypothesis. Fourteen healthy females participated in the fMRI experiment and were scored on sensitivity to reward (SR) and trait avoidance, i.e., sensitivity to punishment (SP) and neuroticism (N). SR scores were adjusted by SP and N scores. As hypothesized, adjusted SR scores predicted, more than SR scores alone, activity in the ventral striatum (left caudate nucleus and nucleus accumbens). SR+/ SPÀ scores predicted increased impulsiveness, i.e., a right side RT priming effect. These results support the Joint Subsystems Hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.