Crystallite size distributions and particle size distributions were determined by transmissions electron microscopy (TEM), X-ray powder diffraction (XRD), and small-angle X-ray scattering (SAXS) for three commercially available TiO 2 powders (P25, UV100, and TiO2_5 nm) and one SSEC produced powder (SSEC78). The theoretical Guinier model was fitted to the experimental obtained XRD data and compared to analytical expressions. Modeling of the XRD spectra showed a difference between the analytical size dependent expressions and the theoretical Guinier model. Primary particle size distributions were extracted from SAXS measurements by the hard sphere model including an interparticle interference factor. The sizes obtained from SAXS were smaller than the sizes obtained from the XRD experiments; however, a good agreement was obtained between the two techniques. Electron microscopy confirmed the primary particle sizes and the shapes obtained by XRD and SAXS. The SSEC78 powder and the commercially available powders showed different morphologies, but SSEC78, UV100, and TiO2_5 nm all consisted of both primary particles as well as a secondary structure comprised of nanosized primary particles agglomeration into larger clusters. P25 showed the largest primary particle size, but did not show a secondary structure.
The nonlocal dispersion relation for electromagnetic surface waves on a metal -vacuum surface, obtained within the framework of the semiclassical infinite -barrier model, is reviewed. Limiting ourselves to the hydrodynamic approach, which allows collective excitations in the electron gas only, we have for the first time determined and identified the branches of the nonlocal dispersion relation, completely. Also, we address the question of how to treat the stationary energy flow associated with electromagnetic surface waves in the nonlocal regime.
SummaryFibrin clots with reduced permeability, increased clot stiffness and reduced fibrinolysis susceptibility may predispose to cardiovascular disease (CVD). Little is known, however, about the structure of fibrin clots in patients with end-stage renal disease (ESRD).These patients suffer from a high risk of CVD in addition to their chronic low-grade inflammation. Using permeability, compaction and turbidity studies in 22 ESRD patients and 24 healthy controls, fibrin clots made from patient plasma were found to be less permeable (p<0.001), less compactable (p<0.001), and less susceptible to fibrinolysis (p<0.001) than clots from controls.The maximum rate of turbidity increase was also higher for the patients than controls (p<0.001), and scan-ning electron microscopy revealed higher clot density of fibrin fibers in clots from patients than clots from controls (p<0.001). Patients had higher plasma concentrations of fibrinogen, C-reative protein and interleukin 6 than controls.These plasma markers of inflammation correlated significantly with most of the fibrin structure characteristics observed in the patients. In contrast, plasma markers of azothemia showed no such correlations. The results suggest that in ESRD patients fibrin clots are significantly different from healthy controls, and that the fibrin structure characteristics in the patients are associated primarily with the inflammatory plasma milieu rather than with level of azothemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.