Background Smartphone-based contact tracing apps can contribute to reducing COVID-19 transmission rates and thereby support countries emerging from lockdowns as restrictions are gradually eased. Objective The primary objective of our study is to determine the potential uptake of a contact tracing app in the Dutch population, depending on the characteristics of the app. Methods A discrete choice experiment was conducted in a nationally representative sample of 900 Dutch respondents. Simulated maximum likelihood methods were used to estimate population average and individual-level preferences using a mixed logit model specification. Individual-level uptake probabilities were calculated based on the individual-level preference estimates and subsequently aggregated into the sample as well as subgroup-specific contact tracing app adoption rates. Results The predicted app adoption rates ranged from 59.3% to 65.7% for the worst and best possible contact tracing app, respectively. The most realistic contact tracing app had a predicted adoption of 64.1%. The predicted adoption rates strongly varied by age group. For example, the adoption rates of the most realistic app ranged from 45.6% to 79.4% for people in the oldest and youngest age groups (ie, ≥75 years vs 15-34 years), respectively. Educational attainment, the presence of serious underlying health conditions, and the respondents’ stance on COVID-19 infection risks were also correlated with the predicted adoption rates but to a lesser extent. Conclusions A secure and privacy-respecting contact tracing app with the most realistic characteristics can obtain an adoption rate as high as 64% in the Netherlands. This exceeds the target uptake of 60% that has been formulated by the Dutch government. The main challenge will be to increase the uptake among older adults, who are least inclined to install and use a COVID-19 contact tracing app.
Objectives: To investigate stakeholder perspectives on how patient preference studies (PPS) should be designed and conducted to allow for inclusion of patient preferences in decision-making along the medical product life cycle (MPLC), and how patient preferences can be used in such decision-making.Methods: Two literature reviews and semi-structured interviews (n = 143) with healthcare stakeholders in Europe and the US were conducted; results of these informed the design of focus group guides. Eight focus groups were conducted with European patients, industry representatives and regulators, and with US regulators and European/Canadian health technology assessment (HTA) representatives. Focus groups were analyzed thematically using NVivo.Results: Stakeholder perspectives on how PPS should be designed and conducted were as follows: 1) study design should be informed by the research questions and patient population; 2) preferred treatment attributes and levels, as well as trade-offs among attributes and levels should be investigated; 3) the patient sample and method should match the MPLC phase; 4) different stakeholders should collaborate; and 5) results from PPS should be shared with relevant stakeholders. The value of patient preferences in decision-making was found to increase with the level of patient preference sensitivity of decisions on medical products. Stakeholders mentioned that patient preferences are hardly used in current decision-making. Potential applications for patient preferences across industry, regulatory and HTA processes were identified. Four applications seemed most promising for systematic integration of patient preferences: 1) benefit-risk assessment by industry and regulators at the marketing-authorization phase; 2) assessment of major contribution to patient care by European regulators; 3) cost-effectiveness analysis; and 4) multi criteria decision analysis in HTA.Conclusions: The value of patient preferences for decision-making depends on the level of collaboration across stakeholders; the match between the research question, MPLC phase, sample, and preference method used in PPS; and the sensitivity of the decision regarding a medical product to patient preferences. Promising applications for patient preferences should be further explored with stakeholders to optimize their inclusion in decision-making.
Background: Lack of evidence about the external validity of discrete choice experiments (DCEs) is one of the barriers that inhibit greater use of DCEs in healthcare decision making. Objectives: To determine whether the number of alternatives in a DCE choice task should reflect the actual decision context, and how complex the choice model needs to be to be able to predict real-world healthcare choices. Methods: Six DCEs were used, which varied in (1) medical condition (involving choices for influenza vaccination or colorectal cancer screening) and (2) the number of alternatives per choice task. For each medical condition, 1200 respondents were randomized to one of the DCE formats. The data were analyzed in a systematic way using random-utility-maximization choice processes. Results: Irrespective of the number of alternatives per choice task, the choice for influenza vaccination and colorectal cancer screening was correctly predicted by DCE at an aggregate level, if scale and preference heterogeneity were taken into account. At an individual level, 3 alternatives per choice task and the use of a heteroskedastic error component model plus observed preference heterogeneity seemed to be most promising (correctly predicting .93% of choices). Conclusions: Our study shows that DCEs are able to predict choices-mimicking real-world decisions-if at least scale and preference heterogeneity are taken into account. Patient characteristics (eg, numeracy, decision-making style, and general attitude for and experience with the health intervention) seem to play a crucial role. Further research is needed to determine whether this result remains in other contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.