Human milk oligosaccharides (HMOs) function as prebiotics for beneficial bacteria in the developing gut, often dominated by
Bifidobacterium
spp. To understand the relationship between bifidobacteria utilizing HMOs and how the metabolites that are produced could affect the host, we analyzed the metabolism of HMO 2′-fucosyllactose (2′-FL) in
Bifidobacterium longum
subsp.
infantis
Bi-26. RNA-seq and metabolite analysis (NMR/GCMS) was performed on samples at early (A600 = 0.25), mid-log (0.5–0.7) and late-log phases (1.0–2.0) of growth. Transcriptomic analysis revealed many gene clusters including three novel ABC-type sugar transport clusters to be upregulated in Bi-26 involved in processing of 2′-FL along with metabolism of its monomers glucose, fucose and galactose. Metabolite data confirmed the production of formate, acetate, 1,2-propanediol, lactate and cleaving of fucose from 2′-FL. The formation of acetate, formate, and lactate showed how the cell uses metabolites during fermentation to produce higher levels of ATP (mid-log compared to other stages) or generate cofactors to balance redox. We concluded that 2′-FL metabolism is a complex process involving multiple gene clusters, that produce a more diverse metabolite profile compared to lactose. These results provide valuable insight on the mode-of-action of 2′-FL utilization by
Bifidobacterium longum
subsp.
infantis
Bi-26.
The present study introduces a novel triple-phase (liquids, solids, and gases) approach, which employed uniformly labeled [U-C] polydextrose (PDX) for the selective profiling of metabolites generated from dietary fiber fermentation in an in vitro colon simulator using human fecal inocula. Employing C NMR spectroscopy, [U-C] PDX metabolism was observed from colonic digest samples. The major C-labeled metabolites generated were acetate, butyrate, propionate, and valerate. In addition to these short-chain fatty acids (SCFAs),C-labeled lactate, formate, succinate, and ethanol were detected in the colon simulator samples. Metabolite formation and PDX substrate degradation were examined comprehensively over time (24 and 48 h). Correlation analysis between C NMR spectra and gas production confirmed the anaerobic fermentation of PDX to SCFAs. In addition, 16S rRNA gene analysis showed that the level of Erysipelotrichaceae was influenced by PDX supplementation and Erysipelotrichaceae level was statistically correlated with SCFA formation. Overall, our study demonstrates a novel approach to link substrate fermentation and microbial function directly in a simulated colonic environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.