The influence of grain shape and crystallographic orientation on the global and local elastic and plastic behaviour of strongly textured materials is investigated with the help of full-field simulations based on texture data from electron backscatter diffraction (EBSD) measurements. To this end, eight different microstructures are generated from experimental data of a high-strength low-alloy (HSLA) steel processed by linear flow splitting. It is shown that the most significant factor on the global elastic stress–strain response (i.e., Young’s modulus) is the crystallographic texture. Therefore, simple texture-based models and an analytic expression based on the geometric mean to determine the orientation dependent Young’s modulus are able to give accurate predictions. In contrast, with regards to the plastic anisotropy (i.e., yield stress), simple analytic approaches based on the calculation of the Taylor factor, yield different results than full-field microstructure simulations. Moreover, in the case of full-field models, the selected microstructure representation influences the outcome of the simulations. In addition, the full-field simulations, allow to investigate the micro-mechanical fields, which are not readily available from the analytic expressions. As the stress–strain partitioning visible from these fields is the underlying reason for the observed macroscopic behaviour, studying them makes it possible to evaluate the microstructure representations with respect to their capabilities of reproducing experimental results.
The effect of laser annealing on the mechanical properties of severely deformed low alloy steel is discussed. Two different sets of annealing parameters were used to achieve improvements in formability. The resulting microstructures, tensile properties and hardness distributions are reviewed. Annealing at temperatures around 700 °C with very high heating and cooling rates leads to recrystallization at the surface and moderate grain growth in subsequent layers. The improvement in ductility is proven to be sufficient to prevent cracking during bending operations.
In this work the two massive forming processes linear flow splitting and linear bend splitting, which generate profiles from sheet metal, are evaluated with respect to characteristic manufacturing‐induced material properties of the produced parts. Resulting microstructural features such as grain size and shape as well as crystallographic textures are linked to mechanical properties such as strength, ductility and anisotropic elasticity and general rules for their evolution are defined. Residual stress distributions are detailed and discussed with regard to the causing geometrical and forming process related aspects. The aim of this paper is to give a comprehensive overview of the properties of profiles produced by linear flow splitting and linear bend splitting and to illustrate general rules for their evolution in order to provide guidelines for an optimized product development process which allows a beneficial use of the manufacturing‐induced properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.