Adhesives on the basis of urea-formaldehyde (UF) and melamine-urea-formaldehyde (MUF) are extensively used in the production of wood-based panels. In the present study, the attempt was made to improve the mechanical board properties by reinforcing these adhesives with cellulose nanofibers (CNFs). The latter were produced from dissolving grade beech pulp by a mechanical homogenization process. Adhesive mixtures with a CNF content of 0, 1, and 3 wt% based on solid resin were prepared by mixing an aqueous CNF suspension with UF and MUF adhesives. Laboratory-scale particle boards and oriented strand boards (OSBs) were produced, and the mechanical and fracture mechanical properties were investigated. Particle boards prepared with UF containing 1 wt% CNF showed a reduced thickness swelling and better internal bond and bending strength than boards produced with pure UF. The reinforcing effect of CNF was even more obvious for OSB where a significant improvement of strength properties of 16% was found. For both, particle board and OSB, mode I fracture energy and fracture toughness were the parameters with the greatest improvement indicating that the adhesive bonds were markedly toughened by the CNF addition.
Internal bond strength testing is a widely used approach for testing quality traits of wood based panels. Generally, failure of internal bond specimens is due to adhesion and/or wood failure in the specimen. It has been reported that a composite product with a large variation in the vertical density profile fails in the center part of the board which is either the middle of the core layer or the transition zone between core layer and face layer. The density in the failure zone is typically 50% lower than the maximum density in the face layers. The aim of this study was to analyze the strain distribution in a specimen under tension perpendicular to the panel plane. The results showed that a high variety of strain magnitude occurred in the specimen. The strain is either aligned with the tension direction or a tension zone is built in one of the edge zones leading to failure. Vector graphics of the specimen show the problematic test setup of internal bond strength measurement. Strain spots in the edges lead to the assumption of an uneven stress distribution due to the momentum which results from non-perfect alignment or irregularities in the test setup.
A new testing method measuring the specific fracture energy of wood-based panels in Mode I is proposed. Three types of wood-based panels, i.e. oriented strand board (OSB), particleboard (PB) and medium density fibreboard (MDF) are investigated, using fracture energy and the industrial European standard method of internal bond strength according to EN 319. Double cantilever beam specimens are notched in the middle layer to introduce an initial crack. To apply tensile load perpendicular to the surface of the panels to open the crack in Mode I specimens were adhesively bonded to steel braces. Besides the calculation of the total fracture energy an advanced analysis of the loadÁdisplacement curve was also performed. Results of the fracture energy method were compared to internal bond strength (IB). Specimen shape is optimized for industrial purposes using double cantilever beams, while the determination of the fracture energy is performed by simple integration of the loadÁdisplacement curve. While IB showed a large scattering of data, the fracture energy test yielded statistically significant differences between the board types.
This is the second part of an article series where the mechanical and fracture mechanical properties of medium density fiberboard (MDF) were studied. While the first part of the series focused on internal bond strength and density profiles, this article discusses the fracture mechanical properties of the core layer. Fracture properties were studied with a wedge splitting setup. The critical stress intensity factors as well as the specific fracture energies were determined. Critical stress intensity factors were calculated from maximum splitting force and two-dimensional isotropic finite elements simulations of the specimen geometry. Size and shape of micro crack zone were measured with electronic laser speckle interferometry. The process zone length was approx. 5 mm. The specific fracture energy was determined to be 45.2 ± 14.4 J/m2 and the critical stress intensity factor was 0.11 ± 0.02 MPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.