This paper provides an overview of recent progress made in the area of cellulose nanofibre-based nanocomposites. An introduction into the methods used to isolate cellulose nanofibres (nanowhiskers, nanofibrils) is given, with details of their structure. Following this, the article is split into sections dealing with processing and characterisation of cellulose nanocomposites and new developments in the area, with particular emphasis on applications. The types of cellulose nanofibres covered are those extracted from plants by acid hydrolysis (nanowhiskers), mechanical treatment and those that occur naturally (tunicate nanowhiskers) or under culturing conditions (bacterial cellulose nanofibrils). Research highlighted in the article are the use of cellulose nanowhiskers for shape memory nanocomposites, analysis of the interfacial properties of cellulose nanowhisker and nanofibrilbased composites using Raman spectroscopy, switchable interfaces that mimic sea cucumbers, polymerisation from the surface of cellulose nanowhiskers by atom transfer radical polymerisation and ring opening polymerisation,
2,3-Dialdehyde
cellulose (DAC) of a high degree of oxidation (92%
relative to AGU units) prepared by oxidation of microcrystalline cellulose
with sodium periodate (48 °C, 19 h) is soluble in hot water.
Solution casting, slow air drying, hot pressing, and reinforcement
by cellulose nanocrystals afforded films (∼100 μm thickness)
that feature intriguing properties: they have very smooth surfaces
(SEM), are highly flexible, and have good light transmittance for
both the visible and near-infrared range (89–91%), high tensile
strength (81–122 MPa), and modulus of elasticity (3.4–4.0
GPa) depending on hydration state and respective water content. The
extraordinarily low oxygen permeation of <0.005 cm3 μm
m–2 day–1 kPa–1 (50% RH) and <0.03 cm3 μm m–2 day–1 kPa–1 (80% RH) can be
regarded as a particularly interesting feature of DAC films. The unusually
high initial contact angle of about 67° revealed a rather low
hydrophilicity compared to other oxidatively modified or unmodified
cellulosic materials which is most likely the result of inter- and
intramolecular hemiacetal and hemialdal formation during drying and
pressing.
Adhesives on the basis of urea-formaldehyde (UF) and melamine-urea-formaldehyde (MUF) are extensively used in the production of wood-based panels. In the present study, the attempt was made to improve the mechanical board properties by reinforcing these adhesives with cellulose nanofibers (CNFs). The latter were produced from dissolving grade beech pulp by a mechanical homogenization process. Adhesive mixtures with a CNF content of 0, 1, and 3 wt% based on solid resin were prepared by mixing an aqueous CNF suspension with UF and MUF adhesives. Laboratory-scale particle boards and oriented strand boards (OSBs) were produced, and the mechanical and fracture mechanical properties were investigated. Particle boards prepared with UF containing 1 wt% CNF showed a reduced thickness swelling and better internal bond and bending strength than boards produced with pure UF. The reinforcing effect of CNF was even more obvious for OSB where a significant improvement of strength properties of 16% was found. For both, particle board and OSB, mode I fracture energy and fracture toughness were the parameters with the greatest improvement indicating that the adhesive bonds were markedly toughened by the CNF addition.
Here we present a general concept of wet surface esterification of cellulose using acyl imidazoles, which enables direct acetylation of never-dried cellulose fibres in aqueous conditions. We hope that due...
HighlightsReinforcement of cellulose aerogels with biopolymers PLA, PCL, CA and PMMA.Interpenetrating and open porous networks of cellulose and biocompatible polymers.scCO2 anti-solvent precipitation and extraction used as core techniques.Cellulose aerogels used as template for the preparation of porous PMMA scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.