The visualization of intracranial arteries in static 3D models from TOF MRA can be improved by the use of an autostereoscopic display.
BackgroundWe hypothesized that a novel three-dimensional virtual semi-transparent annulus plane (3D VSAP) presented on a holographic screen can be used to visualize the prolapsing tissue in degenerative mitral valve disease and furthermore, provide us with geometrical data of the mitral valve apparatus. Phantom and patient studies were designed to demonstrate the feasibility of creating a semi-automatic, semi-transparent mitral annulus plane visualized on a holographic display.MethodsTen pipe cleaners mimicking the mitral annulus with different shapes and three types of annuloplasty rings served as phantoms. We obtained 3D transoesophageal examination of the phantoms in a special designed box filled with water. Recordings were converted to the holographic display and a 3D VSAP was created. The ratio of the major and minor axes as well as the non-planar angles were calculated and compared with direct measures of the phantoms. Forty patients with degenerative mitral valve disease were then analyzed with 3D transthoracic echocardiography (TTE) and a 3D VSAP was created on the holographic display. A total of 240 segments were analyzed by two independent observers, one echo expert (observer I), and the other novice with limited echo experience (observer II). The two observers created the 3D VSAP in each patient before suggesting the valve pathology.ResultsThe major/minor axes ratio and non-planar angles by 3D VSAP correlated with direct measurements by r = 0.65, p < 0.02 and r = 0.99, p < 0.0001, respectively. The sensitivity and specificity of the 3D VSAP method in patients was 81 and 97 %, respectively (observer I) and for observer II 77 and 96 %, respectively. The accuracy and precisions were 93.9 and 89.4 %, respectively (observer I), 92.3 and 85.1 % (observer II). Mitral valve analysis adding a 3D VSAP was feasible with high accuracy and precision, providing a quick and less subjective method for diagnosing mitral valve prolapse. This novel method may improve preoperative diagnostics and may relieve a better understanding of the pathophysiology of mitral valve disease. Thus, based on the specific findings in each patient, a tailored surgical repair can be planned and hopefully enhance long-term repair patency in the future.
The aim of the present study was to test the feasibility of analyzing 3D ultrasound data on a novel holographic display. An increasing number of mini-invasive procedures for mitral valve repair require more effective visualization to improve patient safety and speed of procedures. A novel 3D holographic display has been developed and may have the potential to guide interventional cardiac procedures in the near future. Forty patients with degenerative mitral valve disease were analyzed. All had complete 2D transthoracic (TTE) and transoesophageal (TEE) echocardiographic examinations. In addition, 3D TTE of the mitral valve was obtained and recordings were converted from the echo machine to the holographic screen. Visual inspection of the mitral valve during surgery or TEE served as the gold standard. 240 segments were analyzed by 2 independent observers. A total of 53 segments were prolapsing. The majority included P2 (31), the remaining located at A2 (8), A3 (6), P3 (5), P1 (2) and A1 (1). The sensitivity and specificity of the 3D display was 87 and 99 %, respectively (observer I), and for observer II 85 and 97 %, respectively. The accuracies and precisions were 96.7 and 97.9 %, respectively, (observer I), 94.3 and 88.2 % (observer II), and inter-observer agreement was 0.954 with Cohen's Kappa 0.86. We were able to convert 3D ultrasound data to the holographic display. A very high accuracy and precision was shown, demonstrating the feasibility of analyzing 3D echo of the mitral valve on the holographic screen.
Background: Three-dimensional (3D) echocardiography with multiplanar reconstruction (MPR) is used clinically to quantify the mitral annulus. MPR images are, however, presented on a two-dimensional screen, calling into question their accuracy. An alternative to MPR is an autostereoscopic holographic display that enables indepth visualization of 3D echocardiographic data without the need for special glasses. The aim of this study was to validate an autostereoscopic display using sonomicrometry as a gold standard. Methods:In 11 anesthetized open-chest pigs, sonomicrometric crystals were placed along the mitral annulus and near the left ventricular apex. High-fidelity catheters measured left atrial and ventricular pressures. Adjustments of pre-and afterload were done by constriction of the inferior vena cava and the ascending aorta, respectively. Three-dimensional epicardial echocardiography was obtained from an apical view and converted to the autostereoscopic display. A 3D virtual semitransparent annular surface (VSAS) was generated to measure commissure width (CW), septal-lateral length, area of the mitral annular surface, nonplanarity angle, and the annular height-to-commissure width ratio in mid-systole and late diastole.Results: Mitral annular measurements from the 3D VSAS derived from the 3D echocardiographic images and autostereoscopic display correlated well with sonomicrometry over a range of loading conditions: CW length (r = 0.98, P < .00001), septal-lateral length (r = 0.98, P < .00001), annular surface area (r = 0.93, P < .001), nonplanarity angle (r = 0.87, P < .001), and annular height-to-commissure width ratio (r = 0.85, P < .01). The 3D VSAS showed better agreement with the sonomicrometric measurements compared with MPR.Conclusions: Mitral annular measurements using 3D VSAS correlate well with sonomicrometry over a range of loading conditions and may represent a powerful tool for noninvasive quantification of mitral annular dynamics. (J Am Soc Echocardiogr 2019;32:303-16.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.