In the post-genomic era, increasing efforts have been made to describe the relationship between the genome and the phenotype in cells and organisms. It has become clear that even a complete understanding of the state of the genes, messages, and proteins in a living system does not reveal its phenotype. Therefore, researchers have started to study the metabolome (or the metabolic complement of functional genomics). Within this context, mass spectrometry (MS) has increasingly occupied a central position in the methodologies developed for determination of the metabolic state. This review is mainly focused on the status of MS in the metabolome field, trying to direct the reader to the main approaches for analysis of metabolites, reviewing basic methodologies in sample preparation, and the most recent MS techniques introduced. Apart from the description of the different methods, this review will try to state a general comparison between the several different techniques that involve MS and metabolite analysis, and will highlight their limitations and preferred applicability.
Sample preparation is considered one of the limiting steps in microbial metabolome analysis. Eukaryotes and prokaryotes behave very differently during the several steps of classical sample preparation methods for analysis of metabolites. Even within the eukaryote kingdom there is a vast diversity of cell structures that make it imprudent to blindly adopt protocols that were designed for a specific group of microorganisms. We have therefore reviewed and evaluated the whole sample preparation procedures for analysis of yeast metabolites. Our focus has been on the current needs in metabolome analysis, which is the analysis of a large number of metabolites with very diverse chemical and physical properties. This work reports the leakage of intracellular metabolites observed during quenching yeast cells with cold methanol solution, the efficacy of six different methods for the extraction of intracellular metabolites, and the losses noticed during sample concentration by lyophilization and solvent evaporation. A more reliable procedure is suggested for quenching yeast cells with cold methanol solution, followed by extraction of intracellular metabolites by pure methanol. The method can be combined with reduced pressure solvent evaporation and therefore represents an attractive sample preparation procedure for high-throughput metabolome analysis of yeasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.