The local lymph node assay (LLNA) is used to test the potential of low molecular weight (LMW) compounds to induce sensitization via the skin. In the present study, a respiratory LLNA was developed. Male BALB/c mice were exposed head/nose-only during three consecutive days for 45, 90, 180, or 360 min/day to various LMW allergens. Ear application (skin LLNA) was used as a positive control. Negative controls were exposed to the vehicle. Three days after the last exposure, proliferation was determined in the draining mandibular lymph nodes, and the respiratory tract was examined microscopically. Upon inhalation, the allergens trimellitic anhydride, phthalic anhydride, hexamethylene diisocyanate, toluene diisocyanate, isophorone diisocyanate (IPDI), dinitrochlorobenzene, and oxazolone were positive and showed stimulation indices (SIs) up to 11, whereas trimeric IPDI, formaldehyde, and methyl salicylate were negative (viz. SI < 3). All compounds, except trimeric IPDI, induced histopathological lesions predominantly in the upper respiratory tract. Exposure by inhalation is a realistic approach to test respiratory allergens. However, based on the local toxicity, the dose that can be applied is (generally) much lower than can be achieved by skin application. It is concluded that strong LMW allergens, regardless their immunological nature, besides the skin can also sensitize the body via the respiratory tract. In addition, the contact allergens were as potent as the respiratory allergens, although the potency ranking differed from that in a skin LLNA.
The interaction between exposure to nanomaterials and existing inflammatory conditions has not been fully established. Multiwalled carbon nanotubes (MWCNT; Nanocyl NC 7000 CAS no. 7782-42-5; count median diameter in atmosphere 61 + 5 nm) were tested by inhalation in high Immunoglobulin E (IgE)-responding Brown Norway (BN) rats with trimellitic anhydride (TMA)-induced respiratory allergy. The rats were exposed 2 days/week over a 3.5-week period to a low (11 mg/m 3 ) or a high (22 mg/m 3 ) concentration of MWCNT. Nonallergic animals exposed to MWCNT and unexposed allergic and nonallergic rats served as controls. At the end of the exposure period, the allergic animals were rechallenged with TMA. Histopathological examination of the respiratory tract showed agglomerated/aggregated MWCNT in the lungs and in the lung-draining lymph nodes. Frustrated phagocytosis was observed as incomplete uptake of MWCNT by the alveolar macrophages and clustering of cells around MWCNT. Large MWCNT agglomerates/aggregates were found in granulomas in the allergic rats, suggesting decreased macrophage clearance in allergic rats. In allergic rats, MWCNT exposure decreased serum IgE levels and the number of lymphocytes in bronchoalveolar lavage. In conclusion, MWCNT did not aggravate the acute allergic reaction but modulated the allergy-associated immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.