Abstract. We describe the development of a non-hydrostatic version of the regional climate model RegCM4, called RegCM4-NH, for use at convection-permitting resolutions. The non-hydrostatic dynamical core of the Mesoscale Model MM5 is introduced in the RegCM4, with some modifications to increase stability and applicability of the model to long-term climate simulations. Newly available explicit microphysics schemes are also described, and three case studies of intense convection events are carried out in order to illustrate the performance of the model. They are all run at a convection-permitting grid spacing of 3 km over domains in northern California, Texas and the Lake Victoria region, without the use of parameterized cumulus convection. A substantial improvement is found in several aspects of the simulations compared to corresponding coarser-resolution (12 km) runs completed with the hydrostatic version of the model employing parameterized convection. RegCM4-NH is currently being used in different projects for regional climate simulations at convection-permitting resolutions and is intended to be a resource for users of the RegCM modeling system.
Abstract. We describe the development of a non-hydrostatic version of the regional climate model RegCM4, called RegCM4-NH, for use at convection-permitting resolutions. The non-hydrostatic dynamical core of the Mesoscale Model MM5 is introduced in the RegCM4, with some modifications to increase stability and applicability of the model to long-term climate simulations. Newly available explicit microphysics schemes are also described, and three case studies of intense convection events are carried out in order to illustrate the performance of the model. They are all run at convection-permitting grid spacing of 3 km over domains in northern California, Texas and the Lake Victoria region, without the use of parameterized cumulus convection. A substantial improvement is found in the simulations compared to corresponding coarser resolution (12 km) runs completed with the hydrostatic version of the model employing parameterized convection. RegCM4-NH is currently being used in different projects for regional climate simulations at convection permitting resolutions, and is intended to be a resource for users of the RegCM modeling system.
In climate modeling studies, there is a need to choose a suitable land surface model (LSM) while adhering to available resources. In this study, the viability of three LSM options (Community Land Model version 4.0 [CLM4.0], Noah-MP, and the five-layer thermal diffusion [Bucket] scheme) in the Weather Research and Forecasting model version 3.6 (WRF3.6) was examined for the warm season in a domain centered on the central USA. Model output was compared to Parameter-elevation Relationships on Independent Slopes Model (PRISM) data, a gridded observational dataset including mean monthly temperature and total monthly precipitation. Model output temperature, precipitation, latent heat (LH) flux, sensible heat (SH) flux, and soil water content (SWC) were compared to observations from sites in the Central and Southern Great Plains region. An overall warm bias was found in CLM4.0 and Noah-MP, with a cool bias of larger magnitude in the Bucket model. These three LSMs produced similar patterns of wet and dry biases. Model output of SWC and LH/SH fluxes were compared to observations, and did not show a consistent bias. Both sophisticated LSMs appear to be viable options for simulating the effects of land use change in the central USA.
Recent studies over different geographical regions of the world have proven that regional climate models at the convection-permitting scale (CPMs) improve the simulation of precipitation in many aspects, such as the diurnal cycle, precipitation frequency, intensity, and extremes at daily—but even more at hourly—time scales. Here, we present an evaluation of climate simulations with the newly developed RegCM4-NH model run at the convection-permitting scale (CP-RegCM4-NH) for a decade-long period, over three domains covering a large European area. The simulations use a horizontal grid spacing of ~3 km and are driven by the ERA-Interim reanalysis through an intermediate driving RegCM4-NH simulation at ~12 km grid spacing with parameterized deep convection. The km-scale simulations are evaluated against a suite of hourly observation datasets with high spatial resolutions and are compared to the coarse-resolution driving simulation in order to assess improvements in precipitation from the seasonal to hourly scale. The results show that CP-RegCM4-NH produces a more realistic representation of precipitation than the coarse-resolution simulation over all domains. The most significant improvements were found for intensity, heavy precipitation, and precipitation frequency, both on daily and hourly time scales in all seasons. In general, CP-RegCM4-NH tends to correctly produce more intense precipitation and to reduce the frequency of events compared to the coarse-resolution one. On the daily scale, improvements in CP simulations are highly region dependent, with the best results over Italy, France, and Germany, and the largest biases over Switzerland, the Carpathians, and Greece, especially during the summer seasons. At the hourly scale, the improvement in CP simulations for precipitation intensity and spatial distribution is clearer than at the daily timescale. In addition, the representation of extreme events is clearly improved by CP-RegCM4-NH, particularly at the hourly time scale, although an overestimation over some subregions can be found. Although biases between the model simulations at the km-scale and observations still exist, this first application of CP-RegCM4-NH at high spatial resolution indicates a clear benefit of convection-permitting simulations and encourages further assessments of the added value of km-scale model configurations for regional climate change projections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.