Structural, compositional, morphological, and optical properties of silicon nanocrystal (Si-nc) embedded in a matrix of non-stoichiometric silicon oxide (SiOx) films were studied. SiOx films were prepared by hot filament chemical vapor deposition technique in the 900 to 1,400°C range. Different microscopic and spectroscopic characterization techniques were used. The film composition changes with the growth temperature as Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy reveal. High-resolution transmission electron microscopy supports the existence of Si-ncs with a diameter from 1 to 6.5 nm in the matrix of SiOx films. The films emit in a wide photoluminescent spectrum, and the maximum peak emission shows a blueshift as the growth temperature decreases. On the other hand, transmittance spectra showed a wavelength shift of the absorption border, indicating an increase in the energy optical bandgap, when the growth temperature decreases. A relationship between composition, Si-nc size, energy bandgap, PL, and surface morphology was obtained. According to these results, we have analyzed the dependence of PL on the composition, structure, and morphology of the Si-ncs embedded in a matrix of non-stoichiometric SiOx films.
In this paper, a n-i-p planar heterojunction simulation of Sn-based iodide perovskite solar cell (PSC) is proposed. The solar cell structure consists of a Fluorine-doped tin oxide (FTO) substrate on which titanium oxide (TiO2) is placed; this material will act as an electron transporting layer (ETL); then, we have the tin perovskite CH3NH3SnI3 (MASnI3) which is the absorber layer and next a copper zinc and tin sulfide (CZTS) that will have the function of a hole transporting layer (HTL). This material is used due to its simple synthesis process and band tuning, in addition to presenting good electrical properties and stability; it is also a low-cost and non-toxic inorganic material. Finally, gold (Au) is placed as a back contact. The lead-free perovskite solar cell was simulated using a Solar Cell Capacitance Simulator (SCAPS-1D). The simulations were performed under AM 1.5G light illumination and focused on getting the best efficiency of the solar cell proposed. The thickness of MASnI3 and CZTS, band gap of CZTS, operating temperature in the range between 250 K and 350 K, acceptor concentration and defect density of absorber layer were the parameters optimized in the solar cell device. The simulation results indicate that absorber thicknesses of 500 nm and 300 nm for CZTS are appropriate for the solar cell. Further, when optimum values of the acceptor density (NA) and defect density (Nt), 1016 cm−3 and 1014 cm−3, respectively, were used, the best electrical values were obtained: Jsc of 31.66 mA/cm2, Voc of 0.96 V, FF of 67% and PCE of 20.28%. Due to the enhanced performance parameters, the structure of the device could be used in applications for a solar energy harvesting system.
In this work, we have obtained colloidal solutions of Si nanocrystals (Si-ncs), starting from free-standing porous silicon (PSi) layers. PSi layers were synthesized using a two-electrode Teflon electrochemical cell; the etching solution contained hydrogen peroxide 30%, hydrofluoric acid 40% (HF), and methanol. The anodizing current density was varied to 250 mA cm-2, 1 A cm-2, and 1.2 A cm-2. Thus obtained, PSi was mechanically pulverized in a mortar agate; then, the PSi powders were poured into different solutions to get the final Si-ncs colloidal solutions. The different optical, morphological, and structural characteristics of the colloidal solutions with Si-ncs were measured and studied. These Si-ncs colloidal solutions, measured by photoluminescence (PL), revealed efficient blue-green or violet emission intensities. The results of X-ray diffraction (XRD) indicate that the colloidal solutions are mainly composed of silicon nanocrystallites. The result of UV–vis transmittance indicates that the optical bandgap energies of the colloidal solutions varied from 2.3 to 3.5 eV for colloids prepared in methanol, ethanol, and acetone. The transmission electron microscopy (TEM) images showed the size of the nanocrystals in the colloidal solutions. Fourier transform infrared spectroscopy (FTIR) spectra showed different types of chemical bonds such as Si-O-Si, Si-CH2, and SiH x , as well as some kind of defects.PACS61.46Df.-a; 61.43.Gt; 61.05.cp; 78.55.-m; 81.15.Gh
In the present work, non-stoichiometric silicon oxide films (SiOx) deposited using a hot filament chemical vapor deposition technique at short time and simple parameters of depositions are reported. This is motivated by the numerous potential applications of SiOx films in areas such as optoelectronics. SiOx films were characterized with different spectroscopic techniques. The deposited films have interesting characteristics such as the presence of silicon nanoclusters without applying thermal annealing, in addition to a strong photoluminescence after applying thermal annealing in the vicinity of 1.5 eV, which may be attributed to the presence of small, oxidized silicon grains (less than 2 nm) or silicon nanocrystals (Si-nc). An interesting correlation was found between oxygen content, the presence of hydrogen, and the formation of defects in the material, with parameters such as the band gap and the Urbach energies. This correlation is interesting in the development of band gap engineering for this material for applications in photonic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.