In 2019, around 57% of the population of the world has broadband access to the Internet. Moreover, there are 5.9 billion mobile broadband subscriptions, i.e., 1.3 subscriptions per user. So there is an enormous interconnected computational power held by users all around the world. Also, it is estimated that Internet users spend more than six and a half hours online every day. But in spite of being a great amount of time, those resources are idle most of the day. Therefore, taking advantage of them presents an interesting opportunity. In this study, we introduce JSDoop, a prototype implementation to profit from this opportunity. In particular, we propose a volunteer web browser-based high-performance computing library. JSdoop divides a problem into tasks and uses different queues to distribute the computation. Then, volunteers access the web page of the problem and start processing the tasks in their web browsers. We conducted a proof-of-concept using our proposal and TensorFlow.js to train a recurrent neural network that predicts text. We tested it in a computer cluster and with up to 32 volunteers. The experimental results show that training a neural network in distributed web browsers is feasible and accurate, has a high scalability, and it is an interesting area for research.
Nowadays, the volume of data produced by different kinds of devices is continuously growing, making even more difficult to solve the many optimization problems that impact directly on our living quality. For instance, Cisco projected that by 2019 the volume of data will reach 507.5 zettabytes per year, and the cloud traffic will quadruple. This is not sustainable in the long term, so it is a need to move part of the intelligence from the cloud to a highly decentralized computing model. Considering this, we propose a ubiquitous intelligent system which is composed by different kinds of endpoint devices such as smartphones, tablets, routers, wearables, and any other CPU powered device. We want to use this to solve tasks useful for smart cities. In this paper, we analyze if these devices are suitable for this purpose and how we have to adapt the optimization algorithms to be efficient using heterogeneous hardware. To do this, we perform a set of experiments in which we measure the speed, memory usage, and battery consumption of these devices for a set of binary and combinatorial problems. Our conclusions reveal the strong and weak features of each device to run future algorihms in the border of the cyber-physical system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.