We present a framework for trustworthy symbolic execution of JavaScripts programs, whose aim is to assist developers in the testing of their code: the developer writes symbolic tests for which the framework provides concrete counter-models. We create the framework following a new, general methodology for designing compositional program analyses for dynamic languages. We prove that the underlying symbolic execution is sound and does not generate false positives. We establish additional trust by using the theory to precisely guide the implementation and by thorough testing. We apply our framework to whole-program symbolic testing of real-world JavaScript libraries and compositional debugging of separation logic specifications of JavaScript programs.
The purpose of the present study was to assess the effects of a Pilates training program on muscular strength and flexibility in dance students. Fifteen dance students were divided into 2 groups: experimental (n=7) and control (n=8). Both were assessed in beginning and in the end of the study. Muscular strength was assessed measuring the time supported in the technical skills penché and developpé. To asses flexibility, it was measured the angle between limbs in the technical skills arabesque, developpé and cambré. After the first moment of evaluation, the experimental group performed a Mat-Based Pilates Exercise during 11 weeks. The statistic analyses (two-way analysis of variance - ANOVA 2x2) showed significant differences (p ≤ 0,05) in muscular strength and flexibility measurements between groups after the training program. It was concluded that Pilates training has a positive effect on muscular strength and flexibility in dance students.
Background Pseudomonas aeruginosa is an important human opportunistic pathogen responsible for fatal nosocomial infections worldwide, and has emerged as a relevant animal pathogen. Treatment options are dramatically decreasing, due to antimicrobial resistance and the microorganism’s large versatile genome.Antimicrobial resistance profiles, serotype frequency and genomic profile of unrelated P. aeruginosa isolates of veterinary origin (n = 73), including domesticated, farm, zoo and wild animals mainly from Portugal were studied. The genomic profile, determined by DiversiLab system (Rep-PCR-based technique), was compared with the P. aeruginosa global population structure to evaluate their relatedness.ResultsAround 40% of the isolates expressed serotypes O6 (20.5%) and O1 (17.8%). A total of 46.6% of isolates was susceptible to all antimicrobials tested. Isolates obtained from most animals were non-multidrug resistant (86.3%), whereas 11% were multidrug resistant, MDR (non-susceptible to at least one agent in ≥ three antimicrobial categories), and 2.7% extensively drug resistant, XDR (non-susceptible to at least one agent in all but two or fewer antimicrobial categories). Resistance percentages were as follows: amikacin (0.0%), aztreonam (41.1%), cefepime (9.6%), ceftazidime (2.7%), ciprofloxacin (15.1%), colistin (0.0%), gentamicin (12.3%), imipenem (1.4%), meropenem (1.4%), piperacillin + tazobactam (12.3%), ticarcillin (16.4%), ticarcillin + clavulanic acid (17.8%), and tobramycin (1.4%).Animal isolates form a population with a non-clonal epidemic structure indistinguishable from the global P. aeruginosa population structure, where no specific ‘animal clonal lineage’ was detected.ConclusionsSerotypes O6 and O1 were the most frequent. Serotype frequency and antimicrobial resistance patterns found in P. aeruginosa from animals were as expected for this species. This study confirms earlier results that P. aeruginosa has a non-clonal population structure, and shows that P. aeruginosa population from animals is homogeneously scattered and indistinguishable from the global population structure.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-017-0977-8) contains supplementary material, which is available to authorized users.
Web application designers and users alike are interested in isolation properties for trusted JavaScript code in order to prevent confidential resources from being leaked to untrusted parties. Noninterference provides the mathematical foundation for reasoning precisely about the information flows that take place during the execution of a program. Due to the dynamicity of the language, research on mechanisms for enforcing noninterference in JavaScript has mostly focused on dynamic approaches. We present the first information flow monitor inlining compiler for a realistic core of JavaScript. We prove that the proposed compiler enforces termination-insensitive noninterference and we provide an implementation that illustrates its applicability.
Dissemination of antibiotic resistance is a major concern, especially in aquatic environments, where pollution contributes for resistant bacteria selection. These strains may have serious health implications, especially for endangered species, including the sea turtles' hawksbill Eretmochelys imbricata and green turtles Chelonia mydas. We aimed to evaluate the presence of antibiotic resistant pseudomonads in wild sea turtles from Príncipe Island, São Tomé and Príncipe, Guinea Gulf. Isolates were obtained from oral and cloacal swabs of free-living turtles by conventional techniques. Pseudomonads screening was performed by multiplex-PCR (oprI/oprL) and biochemical identification and antibiotic resistance profiling were achieved using Vitek2. All pseudomonad isolates were genotyped by Rep-PCR. Thirteen isolates were oprI-positive and classified as pseudomonads, eight from the genus Pseudomonas with the species P. aeruginosa, P. stutzeri, and P. mendocina, and five co-isolated Alcaligenes faecalis. The P. aeruginosa isolate was also oprL-positive. Regarding isolates susceptibility profile, 38.5% were susceptible to all antibiotics tested, and multidrug resistant (MDR) strains were not identified. DNA fingerprinting did not show any specific clonal-cluster similarity. Data on the worldwide incidence of antibiotic resistance among wildlife is still very scarce, especially concerning remote tropical areas. Since Pseudomonas genus has emerged as a group of increasingly reported opportunistic microorganisms in human and veterinary medicine with high resistance levels, it could be used as a tool for environmental resistance surveillance, particularly considering their ubiquity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.