The main aim of this paper is to review Middle Permian through Middle Triassic continental successions in European. Secondly, areas of Middle-Late Permian sedimentation, the Permian-Triassic Boundary (PIB) and the onset of Triassic sedimentation at the scale of the westernmost peri-Tethyan domain are defined in order to construct palaeogeographic maps of the area and to discuss the impact of tectonics, climate and sediment supply on the preservation of continental sediment.At the scale of the western European peri-Tethyan basins, the Upper Permian is characterised by a general progradational pattern from playa-lake or floodplain to fluvial environments. In the northern Variscan Belt domain, areas of sedimentation were either isolated or connected to the large basin, which was occupied by the Zechstein Sea. In the southern Variscan Belt, during the Late Permian, either isolated endoreic basins occurred, with palaeocurrent directions indicating local sources, or basins underwent erosion and/or there was no deposition. These basins were not connected with the Tethys Ocean, which could be explained by a high border formed by Corsica-Sardinia palaeorelief and even parts of the Kabilia microplate. The palaeoflora and sedimentary environments suggest warm and semi-arid climatic conditions. At the scale of the whole study area, an unconformity (more or less angular) is observed almost everywhere between deposits of the Upper Permian and Triassic, except in the central part of the Germanic Basin. The sedimentation gap is more developed in the southern area where, in some basins, Upper Pennian sediment does not occur. The large sedimentary supply, erosion and/or lack of deposition during the Late Permian, as well as the variable palaeocurrent direction pattern between the Middle-Late Permian and the EarlyTriassic indicate a period of relief rejuvenation during the Late Pennian. During the Induan, all the intra-belt basins were under erosion and sediment was only preserved in the extra-belt domains (the northern and extreme southern domains). In the northern domain (the central part of the Germanic Basin), sediment was preserved under the same climatic conditions as during the latest Permian, whereas in the extreme southern domain, it was probably preserved in the Tethys Ocean, implying a large amount of detrital components entering the marine waters. Mesozoic sedimentation began in the early Olenekian; the ephemeral fluvial systems indicate arid climatic conditions during this period.Three distinct areas of sedimentation occur: a northern and southern domain, separated by an intra-belt domain.The latter accumulated sediments during the Early-Middle Permian and experienced erosion and/or no-deposition conditions between the Middle-Late Pennian and the beginning of Mesozoic sedimentation, dated as Anisian to Hettangian. At the top of the Lower Triassic, another tectonically induced, more or less angular unconformity is observed: the Hardegsen unconformity, which is dated as intra-Spathian and is especially found in ...
The origin of angiosperms has been a long-standing botanical debate. The great diversity of angiosperms in the Early Cretaceous makes the Jurassic a promising period in which to anticipate the origins of the angiosperms. Here, based on observations of 264 specimens of 198 individual flowers preserved on 34 slabs in various states and orientations, from the South Xiangshan Formation (Early Jurassic) of China, we describe a fossil flower, Nanjinganthus dendrostyla gen. et sp. nov.. The large number of specimens and various preservations allow for an evidence-based reconstruction of the flower. From the evidence of the combination of an invaginated receptacle and ovarian roof, we infer that the seeds of Nanjinganthus were completely enclosed. Evidence of an actinomorphic flower with a dendroid style, cup-form receptacle, and angiospermy, is consistent with Nanjinganthus being a bona fide angiosperm from the Jurassic, an inference that we hope will re-invigorate research into angiosperm origins.
The Pyrenean-Cantabrian Orogen arose through the collision of the Iberian and Eurasian plates, mostly in Cenozoic times. This orogen comprises two main mountain ranges, the Pyrenees to the east, and the Cantabrian Mountains to the west. To date, the early Alpine tectono-sedimentary phases preserved in the Cantabrian Mountains, of Permian and Triassic age, have been considered independently from the same phases in neighbouring basins of SW Europe, and even from the eastern part of the same orogeny (the Pyrenean orogeny). In consequence, the beginning of the Alpine cycle in the Cantabrian Mountains has been interpreted within a specific geodynamic context, far from the general evolutionary phases of the western Peri-Tethys basins. Through detailed field work, including geological mapping, sedimentology, lithostratigraphy and petrology of volcanic rocks, and new palaeontological data, here we define several new lithostratigraphical formations and five new tectono-sedimentary cycles (TS I-V) for the initial phases of evolution of the Mesozoic Basque-Cantabrian Basin, interrupted by periods of tectonic stability. To complete this information, we include data from an onshore borehole (Villabona Mine) and two offshore boreholes constrained by 2D reflection seismic profiles acquired in the North Iberian continental platform. The main tectono-sedimentary cycles, related to the deposition of five major identified lithostratigraphic units, can be described as follows: TS I (late Gzelian-early Asselian), relating to the late Variscan deformation and preserved in a single outcrop in all the Cantabrian Mountains (San Tirso Formation). This formation is constituted by medium-distal alluvial fan deposits in which humid intervals predominate, forming some thin coal beds. TS II (Asselian-Sakmarian), a post-Variscan extensional phase with associated calcalkaline magmatism, represented by profuse volcanic and volcanosedimentary intercalations in the early Permian sedimentary basins (Acebal Formation) and small plutons in surrounding areas. TS III (Kungurian), or reactivation of the post-Variscan extension leading to alluvial and lacustrine carbonate sedimentation in arid climate conditions, which do not change during the rest of the Permian and Triassic periods (Sotres Formation). A generalized karstification in the basin represents the end of Permian deposition, followed by an interruption in sedimentation longer than 30 Myr. The Permian tectono-sedimentary cycles (TS II and TS III) are contemporary with Variscan belt collapse and the basins are controlled by extensional reactivation of NE-SW and E-W Variscan structures, and NW-SE late Variscan structures. TS IV (late Anisian-middle Carnian), renewed sedimentation in more extensive basins, precursors of the great Mesozoic Basque-Cantabrian Basin. This cycle is represented by fluvial deposits (Cicera Formation, or Buntsandstein facies), which are interrupted by the first Mesozoic marine ingression (Rueda Formation, or Muschelkalk facies).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.