Micrurus snakes (coral snakes) may produce severe envenomation that can lead to death by peripheral respiratory paralysis. Only few laboratories produce specific antivenoms, and despite the cross-reactivity found in some Micrurus species venoms, the treatment is not always effective. To test two therapeutic antivenoms against the venom of four species of Micrurus from Southern America, North of South America, Central America, and North America, the determination of the lethal potency of the venoms, the study of some biochemical and immunochemical characteristics, and the determination of the neutralizing activity of both antivenoms were studied. North American and South American antivenoms neutralized well venoms from Micrurus species of the corresponding hemisphere but displayed lower effectiveness against venoms of species from different hemispheres. It was concluded that the neutralization of Micrurus venoms by regional antivenoms could be useful to treat the envenomation by some Micrurus snakes but is necessary to evaluate carefully the antivenoms to be used with the venoms from the snakes of the region. Also, considering the difficulties for coral snake antivenom production, the development of a polyvalent antivenom is useful to treat the envenomation by coral snakes from different regions is necessary.
The immunochemical reactivity and neutralizing capacity of polyvalent Vipera antivenom (Vipera ammodytes, Vipera aspis, Vipera berus, Vipera lebetina, and Vipera xanthina) were tested on the enzymatic and biological activities of Crotalus durissus terrificus and the following Bothrops venoms from Argentina (Bothrops alternatus, Bothrops ammodytoides, Bothrops neuwiedii, Bothrops jararaca, Bothrops jararacussu, and Bothrops moojeni). The Vipera antivenom reacted weakly when tested by double immunoprecipitation (DIP) and reacted with all the venoms when tested by ELISA. Several components in all the venoms studied were recognized in Western blots. Vipera antivenom deactivated to different degrees in vitro procoagulant, (indirect) hemolytic, and proteolytic activities in all the venoms studied. Preincubation of Bothrops alternatus venom with Vipera antivenom neutralized a lethal potency of 4.5 LD50 in mice with an ED50 of 1.25 ± 0.25 ml per mg of venom, and with 1.0 ml/mg inhibited 54% of the hemorragic activity and 48% of necrotic activity. Vipera antivenom (2.0 ml per mg toxin) inhibited the phospholipase A2 activity of purified crotoxin and decreased its lethal potency by 60%, while the neutralizing capacity on the lethal potency of crude Crotalus durissus terrificus venom was poor even at a level of 5.0 ml/mg of venom
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.