The transcription factor steroidogenic factor 1 (SF-1) is exclusively expressed in the brain in the ventral medial hypothalamic nucleus (VMH) and is required for the development of this nucleus. However, the physiological importance of transcriptional programs regulated by SF-1 in the VMH is not well defined. To delineate the functional significance of SF-1 itself in the brain, we generated preand postnatal VMH-specific SF-1 KO mice. Both models of VMHspecific SF-1 KO were susceptible to high fat diet-induced obesity and displayed impaired thermogenesis after acute exposure to high fat diet. Furthermore, VMH-specific SF-1 KO mice showed significantly decreased LepR expression specifically in the VMH, leading to leptin resistance. Collectively, these results indicate that SF-1 directs transcriptional programs in the hypothalamus relevant to coordinated control of energy homeostasis, especially after excess caloric intake.
The transcription factor FOXO1 plays a central role in metabolic homeostasis by regulating leptin and insulin activity in many cell types, including neurons. However, the neurons mediating these effects and the identity of the molecular targets through which FOXO1 regulates metabolism remain to be defined. Here, we show that the ventral medial nucleus of the hypothalamus (VMH) is a key site of FOXO1 action. We found that mice lacking FOXO1 in steroidogenic factor 1 (SF-1) neurons of the VMH are lean due to increased energy expenditure. The mice also failed to appropriately suppress energy expenditure in response to fasting. Furthermore, these mice displayed improved glucose tolerance due to increased insulin sensitivity in skeletal muscle and heart. Gene expression profiling and sequence analysis revealed several pathways regulated by FOXO1. In addition, we identified the nuclear receptor SF-1 as a direct FOXO1 transcriptional target in the VMH. Collectively, our data suggest that the transcriptional networks modulated by FOXO1 in VMH neurons are key components in the regulation of energy balance and glucose homeostasis. IntroductionDefective regulation of energy balance results in obesity and components of metabolic syndrome, such as type 2 diabetes. Understanding the molecular and cellular mechanisms underlying the ability of the central nervous system to regulate energy balance and glucose homeostasis is an area of active investigation. Many proteins are involved in the modulation of metabolic homeostasis. This includes the transcription factor FOXO1, which has been demonstrated to regulate leptin and insulin action in the brain (1, 2). The biological significance of mammalian FOXO1 was initially reported in studies in Caenorhabditis elegans. Two independent groups identified Daf-16 (a homolog of the mammalian FOXO1) as a negative regulator of Daf2 (a homolog of the mammalian insulin receptor) signaling in C. elegans, implying that FOXO1 may play important roles in insulin signaling (3, 4). Subsequent studies using mouse models have confirmed the functional significance of FOXO1 as a critical mediator of insulin effects in many mammalian peripheral cells (1,5,6).Recently, critical metabolic roles of FOXO1 in the hypothalamus have been reported (2, 7). Both studies assessed the role of FOXO1 in melanocortin neurons in the arcuate nucleus of the hypothalamus (ARH). Specifically, they reported POMC and Agrp genes as direct targets of FOXO1. A subsequent report using POMC-specific FOXO1 KO mice demonstrated that FOXO1 plays important roles in regulation of food intake, body weight, and leptin sensitivity, partially depending on the expression of carboxypeptidase E (Cpe) (8). Furthermore, analyses of PDK1/FOXO1 pathways revealed critical roles of FOXO1 to control food intake, body length, and body weight in AGRP neurons of hypothalamus (9).FOXO1 is also highly expressed in many other hypothalamic nuclei, including the dorsomedial nucleus of the hypothalamus and the ventral medial nucleus of the hypothalamus (VMH) ...
Growth hormone (GH) exerts important biological effects primarily related to growth and metabolism. However, the role of GH signaling in the brain is still elusive. To better understand GH functions in the brain, we mapped the distribution of GH-responsive cells and identified the receptors involved in GH central effects. For this purpose, mice received an acute intraperitoneal challenge with specific ligands of the GH receptor (mouse GH), prolactin receptor (prolactin) or both receptors (human GH), and their brains were subsequently processed immunohistochemically to detect the phosphorylated form of STAT5 (pSTAT5). GH induced pSTAT5 immunoreactivity in neurons, but not in astroglial cells of numerous brain regions, including the cerebral cortex, nucleus accumbens, hippocampus, septum and amygdala. The most prominent populations of GH-responsive neurons were located in hypothalamic areas, including several preoptic divisions, and the supraoptic, paraventricular, suprachiasmatic, periventricular, arcuate, ventromedial, dorsomedial, tuberal, posterior and ventral premammillary nuclei. Interestingly, many brainstem structures also exhibited GH-responsive cells. Experiments combining immunohistochemistry for pSTAT5 and in situ hybridization for GH and prolactin receptors revealed that human GH induced pSTAT5 in most, but not all, brain regions through both prolactin and GH receptors. Additionally, males and females exhibited a similar number of GH-responsive cells in forebrain structures known to be sexually dimorphic. In summary, we found GH-responsive cells primarily distributed in brain regions implicated in neurovegetative, emotional/motivational and cognitive functions. Our findings deepen the understanding of GH signaling in the brain and suggest that central GH signaling is likely more ample and complex than formerly recognized.
The habenula is an epithalamic structure differentiated into two nuclear complexes, medial (MHb) and lateral habenula (LHb). Recently, MHb together with its primary target, the interpeduncular nucleus (IP), have been identified as major players in mediating the aversive effects of nicotine. However, structures downstream of the MHb-IP axis, including the median (MnR) and caudal dorsal raphe nucleus (DRC), may contribute to the behavioral effects of nicotine. The afferent and efferent connections of the IP have hitherto not been systematically investigated with sensitive tracers. Thus, we placed injections of retrograde or anterograde tracers into different IP subdivisions or the MnR and additionally examined the transmitter phenotype of major IP and MnR afferents by combining retrograde tract tracing with immunofluorescence and in situ hybridization techniques. Besides receiving inputs from MHb and also LHb, we found that IP is reciprocally interconnected mainly with midline structures, including the MnR/DRC, nucleus incertus, supramammillary nucleus, septum, and laterodorsal tegmental nucleus. The bidirectional connections between IP and MnR proved to be primarily GABAergic. Regarding a possible topography of IP outputs, all IP subnuclei gave rise to descending projections, whereas major ascending projections, including focal projections to ventral hippocampus, ventrolateral septum, and LHb originated from the dorsocaudal IP. Our findings indicate that IP is closely associated to a distributed network of midline structures that modulate hippocampal theta activity and forms a node linking MHb and LHb with this network, and the hippocampus. Moreover, they support a cardinal role of GABAergic IP/MnR interconnections in the behavioral response to nicotine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.