Objectives: The present study aimed to train deep convolutional neural networks (CNNs) to detect caries lesions on Near-Infrared Light Transillumination (NILT) imagery obtained either in vitro or in vivo and to assess the models’ generalizability. Methods: In vitro, 226 extracted posterior permanent human teeth were mounted in a diagnostic model in a dummy head. Then, NILT images were generated (DIAGNOcam, KaVo, Biberach), and images were segmented tooth-wise. In vivo, 1319 teeth from 56 patients were obtained and segmented similarly. Proximal caries lesions were annotated pixel-wise by three experienced dentists, reviewed by a fourth dentist, and then transformed into binary labels. We trained ResNet classification models on both in vivo and in vitro datasets and used 10-fold cross-validation for estimating the performance and generalizability of the models. We used GradCAM to increase explainability. Results: The tooth-level prevalence of caries lesions was 41% in vitro and 49% in vivo, respectively. Models trained and tested on in vivo data performed significantly better (mean ± SD accuracy: 0.78 ± 0.04) than those trained and tested on in vitro data (accuracy: 0.64 ± 0.15; p < 0.05). When tested in vitro, the models trained in vivo showed significantly lower accuracy (0.70 ± 0.01; p < 0.01). Similarly, when tested in vivo, models trained in vitro showed significantly lower accuracy (0.61 ± 0.04; p < 0.05). In both cases, this was due to decreases in sensitivity (by −27% for models trained in vivo and −10% for models trained in vitro). Conclusions: Using in vitro setups for generating NILT imagery and training CNNs comes with low accuracy and generalizability. Clinical significance: Studies employing in vitro imagery for developing deep learning models should be critically appraised for their generalizability. Applicable deep learning models for assessing NILT imagery should be trained on in vivo data.
We aimed to assess the effects of hyperparameter tuning and automatic image augmentation for deep learning-based classification of orthodontic photographs along the Angle classes. Our dataset consisted of 605 images of Angle class I, 1038 images of class II, and 408 images of class III. We trained ResNet architectures for classification of different combinations of learning rate and batch size. For the best combination, we compared the performance of models trained with and without automatic augmentation using 10-fold cross-validation. We used GradCAM to increase explainability, which can provide heat maps containing the salient areas relevant for the classification. The best combination of hyperparameters yielded a model with an accuracy of 0.63–0.64, F1-score 0.61–0.62, sensitivity 0.59–0.65, and specificity 0.80–0.81. For all metrics, it was apparent that there was an ideal corridor of batch size and learning rate combinations; smaller learning rates were associated with higher classification performance. Overall, the performance was highest for learning rates of around 1–3 × 10−6 and a batch size of eight, respectively. Additional automatic augmentation improved all metrics by 5–10% for all metrics. Misclassifications were most common between Angle classes I and II. GradCAM showed that the models employed features relevant for human classification, too. The choice of hyperparameters drastically affected the performance of deep learning models in orthodontics, and automatic image augmentation resulted in further improvements. Our models managed to classify the dental sagittal occlusion along Angle classes based on digital intraoral photos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.