Fossil Foraminifera appear in the Early Cambrian, at about the same time as the first skeletonized metazoans. However, due to the inadequate preservation of early unilocular (single-chambered) foraminiferal tests and difficulties in their identification, the evolution of early foraminifers is poorly understood. By using molecular data from a wide range of extant naked and testate unilocular species, we demonstrate that a large radiation of nonfossilized unilocular Foraminifera preceded the diversification of multilocular lineages during the Carboniferous. Within this radiation, similar test morphologies and wall types developed several times independently. Our findings indicate that the early Foraminifera were an important component of Neoproterozoic protistan community, whose ecological complexity was probably much higher than has been generally accepted.
Recent molecular phylogenetic studies revealed the extraordinary diversity of single-celled eukaryotes. However, the proper assessment of this diversity and accurate reconstruction of the eukaryote phylogeny are still impeded by the lack of molecular data for some major groups of easily identifiable and cultivable protists. Among them, amoeboid eukaryotes have been notably absent from molecular phylogenies, despite their diversity, complexity, and abundance. To partly fill this phylogenetic gap, we present here combined small-subunit ribosomal RNA and actin sequence data for the three main groups of ''Heliozoa'' (Actinophryida, Centrohelida, and Desmothoracida), the heliozoan-like Sticholonche, and the radiolarian group Polycystinea. Phylogenetic analyses of our sequences demonstrate the polyphyly of heliozoans, which branch either as an independent eukaryotic lineage (Centrohelida), within stramenopiles (Actinophryida), or among cercozoans (Desmothoracida), in broad agreement with previous ultrastructure-based studies. Our data also provide solid evidence for the existence of the Rhizaria, an emerging supergroup of mainly amoeboid eukaryotes that includes desmothoracid heliozoans, all radiolarians, Sticholonche, and foraminiferans, as well as various filose and reticulose amoebae and some flagellates.
Background: Over the past few years, the use of molecular techniques to detect cultivationindependent, eukaryotic diversity has proven to be a powerful approach. Based on small-subunit ribosomal RNA (SSU rRNA) gene analyses, these studies have revealed the existence of an unexpected variety of new phylotypes. Some of them represent novel diversity in known eukaryotic groups, mainly stramenopiles and alveolates. Others do not seem to be related to any molecularly described lineage, and have been proposed to represent novel eukaryotic kingdoms. In order to review the evolutionary importance of this novel high-level eukaryotic diversity critically, and to test the potential technical and analytical pitfalls and limitations of eukaryotic environmental DNA surveys (EES), we analysed 484 environmental SSU rRNA gene sequences, including 81 new sequences from sediments of the small river, the Seymaz (Geneva, Switzerland).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.