To investigate the hypothesis that decreased hapten flexibility may lead to increased catalytic antibody activity, we used two closely related immunogens differing only in the flexibility of the atomic framework around the structural motif of the haptens, analogous to the reaction centre of the corresponding substrates. Identical leaving-group determinants in the haptens and identical leaving groups in the substrates removed the ambiguity inherent in some data reported in the literature. Anti-phosphate and anti-phosphonate kinetically homogeneous polyclonal catalytic antibody preparations were compared by using carbonate and ester substrates respectively, each containing a 4-nitrophenolate leaving group. Synthetic routes to a new phosphonate hapten and new ester substrate were developed. The kinetic advantage of the more rigid anti-phosphonate/ester system was demonstrated at pH 8.0 by a 13-fold advantage in k(cat)/k(non-cat) and a 100-fold advantage in the proficiency constant, k(cat)/k (non-cat) x K(m). Despite these differences, the pH-dependences of the kinetic and binding characteristics and the results of chemical modification studies suggest closely similar catalytic mechanisms. The possible origin of the kinetic advantage of the more rigid hapten/substrate system is discussed.
The substrate selectivities of an anti-phosphonate and an anti-phosphate kinetically homogeneous polyclonal catalytic antibody preparation and two hydrolytic enzymes were compared by using hapten-analogous and truncated carbonate and ester substrates each containing a 4-nitrophenolate leaving group. Syntheses of the truncated substrates devoid of recognition features in the non-leaving group parts of the substrates are reported. The relatively high kinetic selectivity of the more active anti-phosphonate antibody preparation is considered to depend on a relatively rigid catalytic site with substantial reaction centre specificity together with other important recognition interactions with the extended non-leaving group part of the substrate. In contrast, the less catalytically active, more flexible anti-phosphate antibody exhibits much lower kinetic selectivity for the substrate reaction centre comparable with that of the hydrolytic enzymes with activity much less dependent on recognition interactions with the non-leaving group part of the substrate. The ways in which haptenic flexibility and IgG architecture might contribute to the differential kinetic selectivities are indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.