Antarctica offers a range of extreme climatic conditions, such as low temperatures, high solar radiation and low nutrient availability, and constitutes one of the harshest environments on Earth. Despite that, it has been successfully colonized by 'cold-loving' fungi, which play a key role in decomposition cycles in cold ecosystems. However, knowledge about the ecological role of yeasts in nutrient or organic matter recycling/ mineralization remains highly fragmentary. The aim of this work was to study the yeast microbiota in samples collected on 25 de Mayo/King George Island regarding the scope of their ability to degrade polyphenolic substrates such as lignin and azo dyes. Sixty-one yeast isolates were obtained from 37 samples, including soil, rocks, wood and bones. Molecular analyses based on rDNA sequences revealed that 35 yeasts could be identified at the species level and could be classified in the genera Leucosporidiella, Rhodotorula, Cryptococcus, Bullera and Candida. Cryptococcus victoriae was by far the most ubiquitous species. In total, 33% of the yeast isolates examined showed significant activity for dye decolorization, 25% for laccase activity and 38% for ligninolytic activity. Eleven yeasts did not show positive activity in any of the assays performed and no isolates showed positive activity across all tested substrates. A high diversity of yeasts were isolated in this work, possibly including undescribed species and conspicuous Antarctic yeasts, most of them belonging to oligotrophic, slow-growing and metabolically diverse basidiomycetous genera.
Fibrinolytic enzyme production was evaluated in fungal specimens isolated from the sub-tropical Las Yungas Pedemontana forest (Tucumán, Argentina). Proteolytic and fibrinolytic activities were evaluated in freezethaw crude extracts from 230 fungal isolates on 1% w/v skimmed-milk or 0.25% w/v fibrin-agar plates, respectively. Proteolytic activity was positive in 62% of the isolates, whilst only three of them were able to produce extracellular fibrinolytic enzymes on solid nutritive medium. Fibrinolytic-positive extracts were able to degrade fibrin clots in a direct plasminogen-independent way. Selected isolates were identified by sequencing the 26S rDNA D1/D2 domain. Isolates LY 4.1 and LY 4.4 showed a 99.9% similarity with Bionectria ochroleuca, while LY 4.2 showed a 99.9% identity with Cladosporium cladosporioides. Under submerged culture conditions, LY 4.1 and LY 4.4 were able to excrete fibrinolytic enzymes, reaching a maximum at 120 h of cultivation of 100.2 and 107.9 U/ml in plasmin-equivalent units, respectively. Fibrinolytic enzyme production could be scaled-up to fermenter scale reaching similar values. Fibrin zymography showed that fibrinolytic activity was associated with *173-, 153-and 80-kDa protein fractions. Extracellular fibrinolytic enzymes from Bionectria species may be potentially related to pathogenesis mechanisms, as already demonstrated for serine-proteases from the nematicidal anamorph Clonostachys rosea. This work reveals the potential of Bionectria strains as an unconventional and unexplored production alternative to already known thrombolytic agents. The value of Las Yungas forests as a reservoir of fungal species with promising biotechnological value could be also highlighted.
Decolourization and degradation of the diazo dye Reactive Black 5 was carried out by the yeast Trichosporon akiyoshidainum. A nine-factor Plackett-Burman design was employed for the study and optimization of the decolourization process and production of manganese peroxidase (MnP) and tyrosinase activities. In the present study, 26 individual experiments were conducted and three responses were evaluated. Raising yeast extract concentration significantly enhanced decolourization and MnP production. Carbon and nitrogen sources, glucose and (NH 4 ) 2 SO 4 , showed no significant effect on any response over the concentration range tested. Other culture medium components, such as CaCl 2 or MgSO 4 , could be excluded from the medium formula, as they had no effect on the evaluated responses. Metal ions (Fe, Cu and Mn) showed different effects on decolourization and enzymatic activities. Addition of copper significantly enhanced MnP activity and decreased dye decolourization. On the contrary, iron had a positive effect on decolourization and no effect on enzyme production. Oddly, increasing manganese concentration had a positive effect on tyrosinase production without affecting decolourization or MnP activity. These results strongly suggest that dye decolourization should be regarded as a complex multi-enzymatic process, where optimal medium composition should arise as a compromise between those optimal for each implied enzyme production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.