This paper presents a metric for the efficient application of selective hardening using software based techniques against soft-errors. It offers a method for selecting the resources to be protected obtaining maximum fault coverage with the minimum overhead. Common approaches are based on exhaustive exploration of the solution space or time-consuming fault injection campaigns. Contrarily, our Software based HARdening Criticality metric (SHARC) relies on early estimations of the impact that protection techniques will have on the global reliability of the application. SHARC estimations are based on features extracted from the dynamic analysis of source code, and produce a prioritization of the resources involved accordingly. For assessing our approach two case studies were carried out using low-cost embedded microprocessors. Results were compared to traditional approaches like brute-force exploration and the Architectural Vulnerability Factor (AVF) metric. Experiments show that SHARC improves the results between 5% and 21% at a fraction of the effort.
Resumen-Este artículo presenta una herramienta de inyección de fallos y la metodología para la realización de campañas de inyección de Single-Event-Upsets (SEUs) en microprocesadores Commercial-off-the-shelf (COTS). Este método utiliza las ventajas que ofrecen las infraestructuras de depuración de los microprocesadores actuales, además del depurador estándar de GNU (GDB) para la ejecución y depuración de los programas de pruebas. Los experimentos desarrollados sobre microprocesadores reales, así como en las máquinas virtuales, demuestran la viabilidad y la flexibilidad de la propuesta como una solución de bajo costo para evaluar la fiabilidad de los microprocesadores COTS.
Palabras claves-Commercial-off-the-shelf (COTS), depuración integrada en el chip, efectos de la radiación, fiabilidad de microprocesadores, inyección de fallos, errores lógicos.
Abstract-This paper presents a fault injection tool and methodology for performing Single-Event-Upsets (SEUs) injection campaigns on Commercial-off-the-shelf (COTS) microprocessors. This method takes advantage of the debug facilities of modern
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.