Fault mitigation techniques based on pure software, known as software-implemented hardware fault tolerance (SIHFT), are very attractive for use in COTS (commercial off-the-shelf) microprocessors because they do not require physical modification of the system. However, these techniques cause software overheads that may affect the efficiency and costs of the overall system. This paper presents a design method of radiation-induced fault-tolerant microprocessorbased systems with lower execution time overheads. For this purpose, approximate computing and selective fault mitigation software-based techniques are used; thus it can be used in COTS devices. The proposal is validated through a case study for the TI MSP430 microcontroller. Results show that the designer can choose among a wide spectrum of design configurations, exploring different trade-offs between reliability, performance, and accuracy of results.
Approximate Computing techniques have been successfully used to reduce the overhead associated with redundancy in fault-tolerant system designs. This paper presents a fault tolerance method to reduce the execution time overhead of the well-known Time Redundancy technique by means of an improvement proposed for the Approximate Computing software-based technique known as loop perforation. Time Redundancy is a software-based fault tolerance technique that involves executing replicas of a task at different times. We propose to approximate the tasks to be executed using a new approximate computing technique based on loop perforation, i.e., simplified iterations. The novelty of this method is the combined use of the fault tolerance technique, temporal redundancy, jointly with the new proposed Approximate Computing technique, simplified iterations. The proposal is validated through simulation-based fault injection campaigns on several test programs for the ARM and RISC-V microprocessor architectures. Experimental results verified not only the applicability of the proposal in different architectures, but also its effectiveness, showing a good trade-off between reliability, error and overhead. Results showed that using the proposed method, a normalized mean work to failure (MWTF) up to 5.28× was obtained with approximation errors lower than those obtained using the traditional loop perforation technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.