<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span><strong>Objetivo:</strong> </span><span>establecer una estrategia que permita elaborar un horario universitario en tres etapas, utilizando programación matemática, tomando en cuenta la problemática que enfrentan la mayoría de los centros educativos públicos del nivel superior en México, que incluye la contratación de profesores de forma temporal en cada ciclo escolar.<br /> </span><strong></strong></p><p><strong>Método: </strong><span>la estrategia contempló la descomposición del problema original en tres modelos matemáticos, considerando variables binarias de dos índices, el uso de subconjuntos en el modelado y el empleo de una heurística.</span></p><p><strong>Resultados:</strong> se generaron horarios de clase compactos para estudiantes, en los que se aprovecharon los espacios de las aulas y se empleó de manera eficiente a los profesores de la universidad. La estrategia logró la automatización del proceso en la elaboración de horarios.</p><p><strong>Limitaciones: </strong><span>el trabajo presentado, analiza el caso del Tecnológico Nacional de México en Celaya. Por el momento, no se considera el uso de laboratorios, ni la aleatoriedad de la demanda de grupos y materias. </span></p><p><strong>Principales hallazgos: </strong><span>la estrategia expuesta, generó una reducción de al menos 98.34 % en el número de variables, permitiendo a la técnica exacta de ramificación y acotamiento alcanzar tiempos eficientes en la búsqueda de una solución, en un problema clasificado como NP-Duro. </span></p></div></div></div>
Production planning is one of the most important administrative decisions a company can make, as it involves achieving the lead times set by the customers while taking advantage of the resources the organization has. Over time, different strategies using mathematical models have been implemented in production planning, aimed at finding the best solution for optimizing the available resources. In recent years companies throughout the world have successfullly implemented Lean Manufacturing, aimed at improving their production processes and eliminating everything that does not add value to the product. This article exemplifies a new strategy for production planning, using basic concepts from Lean Manufacturing and mixed integer linear programming models by stages. We took a women’s footwear factory in the city of León, Guanajuato, México, as a case study. The results show that it is possible to get planning that optimizes the organization’s resources and shortens the products’ lead times by shrinking inventories, from a Lean Manufacturing perspective.
Footwear production is subject to the variability inherent in any process, and producers often need to apply tools that allow them to make the right decisions. This work documents the process to optimize the buffer allocation in a shoe manufacturing line minimizing the cycle time in the system, applying a metamodeling approach. It was found that the Front sewing operation, and the interaction between the Lining sewing operation and the assembly operation have the greatest effect on the flow time of the product within the process; the optimum assignment of spaces follows a non-uniform arrangement on the line saturating the slower stations; the cycle time follows a non-linear behavior vs. the total number of spaces (N) in the line. For a certain value of N, the cycle time reaches a minimum value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.