Human Mesenchymal Stem Cells (hMSCs) play an important role as new therapeutic alternatives in advanced therapies and regenerative medicine thanks to their regenerative and immunomodulatory properties, and ability to migrate to the exact area of injury. These properties have made hMSCs one of the more promising cellular active substances at present, particularly in terms of the development of new and innovative hMSC-based products. Currently, numerous clinical trials are being conducted to evaluate the therapeutic activity of hMSC-based products on specific targets. Given the rapidly growing number of hMSC clinical trials in recent years and the complexity of these products due to their cellular component characteristics and medicinal product status, there is a greater need to define more stringent, specific, and harmonized requirements to characterize the quality of the hMSCs and enhance the analysis of their safety and efficacy in final products to be administered to patients. These requirements should be implemented throughout the manufacturing process to guarantee the function and integrity of hMSCs and to ensure that the hMSC-based final product consistently meets its specifications across batches. This paper describes the principal phases involved in the design of the manufacturing process and updates the specific technical requirements needed to address the appropriate clinical use of hMSC-based products. The challenges and limitations to evaluating the safety, efficacy, and quality of hMSCs have been also reviewed and discussed.
Vulvovaginal candidiasis (VVC) poses a significant problem worldwide affecting women from all strata of society. It is manifested as changes in vaginal discharge, irritation, itching and stinging sensation. Although most patients respond to topical treatment, there is still a need for increase the therapeutic arsenal due to resistances to anti-infective agents. The present study was designed to develop and characterize three hydrogels of chitosan (CTS), Poloxamer 407 (P407) and a combination of both containing 2% caspofungin (CSP) for the vaginal treatment of VVC. CTS was used by its mucoadhesive properties and P407 was used to exploit potential advantages related to increasing drug concentration in order to provide a local effect. The formulations were physically, mechanically and morphologically characterized. Drug release profile and ex vivo vaginal permeation studies were performed. Antifungal efficacy against different strains of Candida spp. was also evaluated. In addition, tolerance of formulations was studied by histological analysis. Results confirmed that CSP hydrogels could be proposed as promising candidates for the treatment of VVC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.