This paper shows a digital noise generator designed in FPGA, based on a variant of the one-dimensional (1D) chaotic tent map (T-1D). The T-1D map is a piecewise linear 1D chaotic map that defines the statistical behavior of the generated sequences using its control parameter. In this way, the proposed noise generator is a highly competitive alternative in cryptographic systems when the statistical behavior of the sequences is closer to the uniform statistical distribution. The proposed system uses the inverted tent chaotic map (IT-1D), which has the same statistical behavior as the T-1D map. The fundamental algorithm used in this system was developed based on a 64-bit double precision format according to the numerical representation of floating point numbers defined in the IEEE-754 standard. The proposed system is analized using mechanical statistic tools and some statistical tests defined in the NIST 800-22SP (USA) standard. The main contribution of this work is the possibility of generating binary sequence of pseudorandom appearance by a procedure implemented in an FPGA device that translates real numbers to natural numbers preserving the statistical properties of sequences of real numbers that can be generated with the tent chaotic map in its original definition domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.