Satellite-based precipitation (SBP) products with global coverage have the potential to overcome the lack of information in places where there are no rain gauges to perform hydrological analyses; however, it is necessary to evaluate the reliability of the SBP products. In this study, we evaluated the performance of the Climate Prediction Center morphing technique with corrected bias (CMORPH-CRT) product in 14 sites in Mexico. The evaluation was carried out using two approaches: (1) using categorical metrics that include indicators of probability of detection (POD), false alarm rate (FAR), critical success index (CSI), and frequency bias index (FBI); and (2) through statistical indicators such as the mean absolute error (MAE), root mean square error (RMSE), relative bias (RB), and correlation coefficient (CC). The analysis was carried out with two levels of temporal aggregation: 30 min and daily. The results indicate that the CMORPH-CRT product overestimates the number of precipitation events in most cases since FBI values greater than 1 in 78.6% of analyzed stations were obtained. Also, we obtained CC values in the range of 0.018 to 0.625, which implied weak to moderate correlations, and found that in all stations, the CMORPH-CRT product overestimates the precipitation (RB > 0).
La estimación de periodos de retorno de caudales tiene una gran incertidumbre debido a la poca o nula información disponible de datos medidos en muchas cuencas de México y del mundo. Este estudio muestra una metodología para generar una serie de tiempo sintética de caudales con mayor longitud que los datos observados y poder estimar periodos de retorno de caudales con menor incertidumbre. Para esto, se usan datos de repronósticos climatológicos del ECMWF, con un tiempo de espera de 5 a 8 días, como insumos en un modelo hidrológico agregado y continuo en la cuenca del Río La Silla, en Monterrey, México. El modelo hidrológico fue calibrado manualmente, obteniendo un comportamiento satisfactorio. Los periodos de retorno estimados a partir de las series de tiempo sintéticas son menores, pero muestran un comportamiento similar y están en su mayoría dentro del rango de incertidumbre a los obtenidos con datos observados. Finalmente, la incertidumbre se redujo de 2 a 7 veces dependiendo del periodo de retorno comparado, y para un periodo de retorno de 1000 años, esta se redujo alrededor de un 60%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.