La sequía es uno de los desastres naturales más frecuentes en el centro-norte de México, y su identificación y caracterización son cruciales para tratar de mitigar sus efectos. Se analizó la evolución de las sequías meteorológicas en
The increasing population and urban sprawl will continue to add significant pressure to natural resources in arid and semi-arid zones. This study evaluates the theoretical effectiveness of adapting resilient strategies such as water conservation and green infrastructure to mitigate the water scarcity faced by the inhabitants of a residential area with a semi-arid climate. Three scenarios were analyzed at a micro-basin level to determine the mitigation of surface runoff and the volume that can be theoretically intercepted for further use: (a) unaltered natural watershed (scenario 1), (b) currently urbanized watershed (scenario 2), and (c) watershed adapted with resilient strategies (scenario 3). For this last scenario, the annual usable volume of rainwater intercepted on the dwelling rooftops was obtained. The runoff and peak flow in the natural watershed were lower than in the other two scenarios. In contrast, a decrease in the runoff was observed in scenario 3 concerning scenario 2, which indicates that the interception of rainwater on house roofs and the adoption of green infrastructure solutions would significantly reduce the diameter of urban drainage pipes required in new developments, as well as the dependency of inhabitants on potable water services. In sites with semi-arid climates, it is possible to take advantage of the rainwater harvested on rooftops and the runoff intercepted through green infrastructure to mitigate local water scarcity problems, which should be considered and adopted in new residential developments.
Satellite-based precipitation (SBP) products with global coverage have the potential to overcome the lack of information in places where there are no rain gauges to perform hydrological analyses; however, it is necessary to evaluate the reliability of the SBP products. In this study, we evaluated the performance of the Climate Prediction Center morphing technique with corrected bias (CMORPH-CRT) product in 14 sites in Mexico. The evaluation was carried out using two approaches: (1) using categorical metrics that include indicators of probability of detection (POD), false alarm rate (FAR), critical success index (CSI), and frequency bias index (FBI); and (2) through statistical indicators such as the mean absolute error (MAE), root mean square error (RMSE), relative bias (RB), and correlation coefficient (CC). The analysis was carried out with two levels of temporal aggregation: 30 min and daily. The results indicate that the CMORPH-CRT product overestimates the number of precipitation events in most cases since FBI values greater than 1 in 78.6% of analyzed stations were obtained. Also, we obtained CC values in the range of 0.018 to 0.625, which implied weak to moderate correlations, and found that in all stations, the CMORPH-CRT product overestimates the precipitation (RB > 0).
Design of hydraulic works requires the estimation of design hydrological events by statistical inference from a probability distribution. Using Monte Carlo simulations, we compared coverage of confidence intervals constructed with four bootstrap techniques: percentile bootstrap (BP), bias-corrected bootstrap (BC), accelerated bias-corrected bootstrap (BCA) and a modified version of the standard bootstrap (MSB). Different simulation scenarios were analyzed. In some cases, the mother distribution function was fit to the random samples that were generated. In other cases, a distribution function different to the mother distribution was fit to the samples. When the fitted distribution had three parameters, and was the same as the mother distribution, the intervals constructed with the four techniques had acceptable coverage. However, the bootstrap techniques failed in several of the cases in which the fitted distribution had two parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.