[1] The Southern Argentina Agile Meteor Radar (SAAMER) was installed at Rio Grande on Tierra del Fuego (53.8°S, 67.8°W) in May 2008 and has been operational for ∼24 months. This paper describes the motivations for the radar design and its placement at the southern tip of South America, its operating modes and capabilities, and observations of the mean winds, planetary waves, and tides during its first ∼20 months of operation. SAAMER was specifically designed to provide very high resolution of large-scale motions and hopefully enable direct measurements of the vertical momentum flux by gravity waves, which have only been possible previously with dual-or multiple-beam radars and lidars or in situ measurements. SAAMER was placed on Tierra del Fuego because it was a region devoid of similar measurements, the latitude was anticipated to provide high sensitivity to an expected large semidiurnal tide, and the region is now recognized to be a "hot spot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere, perhaps the most dynamically active location on Earth. SAAMER was also intended to permit simultaneous enhanced meteor studies, including "head echo" and "nonspecular" measurements, which were previously possible only with high-power largeaperture radars. Initial measurements have defined the mean circulation and structure, exhibited planetary waves at various periods, and revealed large semidiurnal tide amplitudes and variability, with maximum amplitudes at higher altitudes often exceeding 60 m s −1 and amplitude modulations at periods from a few to ∼30 days.
Capsule summaryThe SOUTHTRAC-GW airborne mission explored the dynamics of gravity waves in the region of the Southern Andes and Antarctic Peninsula during the extraordinary southern hemisphere SSW of September 2019.
Large-amplitude internal gravity waves were observed using Rayleigh lidar temperature soundings above Rio Grande, Argentina ($$54^\circ \; \hbox {S}$$
54
∘
S
, $$68^\circ \; \hbox {W}$$
68
∘
W
), in the period 16–23 June 2018. Temperature perturbations in the upper stratosphere amounted to 80 K peak-to-peak and potential energy densities exceeded 400 J/kg. The measured amplitudes and phase alignments agree well with operational analyses and short-term forecasts of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF), implying that these quasi-steady gravity waves resulted from the airflow across the Andes. We estimate gravity wave momentum fluxes larger than 100 mPa applying independent methods to both lidar data and IFS model data. These mountain waves deposited momentum at the inner edge of the polar night jet and led to a long-lasting deceleration of the stratospheric flow. The accumulated mountain wave drag affected the stratospheric circulation several thousand kilometers downstream. In the 2018 austral winter, mountain wave events of this magnitude contributed more than 30% of the total potential energy density, signifying their importance by perturbing the stratospheric polar vortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.