Photothermal tumor ablation might be carried out with multibranched gold nanoparticles (MBAuNPs) having maximum absorbance (Amax) in the infrared region and functionalized with ligands that would bind them to the target tumor markers. However, in nanomedicine applications, the nanostructures must reach their target tissues to be effective, but the corona of serum proteins they instantaneously acquire when administered by intravenous injection may affect their activity; for this reason, we decided to analyze the effect that exposing MBAuNPs to bovine serum albumin (BSA) and human serum (HS) have on their protein corona and physical properties. The synthesized spherical Au seeds stoichiometrically generate piñata-like MBAuNPs of 8–20 peaks potentially useful for photothermal tumor ablation since they induce hyperthermia of more than 4 °C in phantom gels mimicking the skin irradiated with an 808 nm laser at 0.75 W/cm2. The calculated surface area of MBAuNPs ranges from 24 984 nm2 to 40 669 nm2, depending on the number of peaks we use for modeling the NPs. When MBAuNPs are exposed to BSA, they acquire a protein corona with an internal “hard” portion composed by one or two layers of BSA containing ∼1000–4000 molecules covalently bound to their surface, and an external “soft” portion formed by agglomerated BSA molecules linked by non-covalent bonds. Functionalization with BSA decreases the tendency of MBAuNPs to agglomerate and increases their size dispersion. MBAuNPs and MBAuNPs–BSA exposed to HS bind HS albumin and other HS proteins ranging from 25 kDa to 180 kDa that increase their hydrodynamic diameter and decrease their stability. We conclude that MBAuNPs exposed to serum albumin and HS instantaneously acquire a hard and soft protein corona that may affect prior or subsequent functionalization aiming to direct them to specific cell or tissue targets.
ZrOx/SiO2 and VOx/ZrOx/SiO2 catalysts (5 wt %–25 wt % Zr, 4 wt % V) were prepared by grafting zirconium and vanadium alkoxides on Aerosil 380. All samples were characterized by temperature programmed reduction, N2 physisorption, X-ray diffraction, Raman spectroscopy, and ammonia adsorption microcalorimetry. Tetragonal ZrO2 and zircon (ZrSiO4) were present at 25 wt % Zr, but only amorphous zirconia overlayer existed for lower loadings. At lower Zr loadings (5 wt %–10 wt % Zr), exposed silica surface leads to V2O5 crystallites and isolated VO4 species, although V reducibility behavior changes, from being similar to VOx/SiO2 (5 wt % Zr) to showing VOx/ZrO2 behavior at 10 wt % Zr, and a diminished total amount of reducible V. Highly acidic ZrO2 sites are covered by the vanadium grafting, forming weaker sites (60–100 kJ/mol NH3 adsorption strength). Catalytic conversion and selectivity for the oxidative dehydrogenation of n-butane (673 K, n-C4/O2 = 2.2) over VOx/ZrOx/SiO2 show that 1,3-butadiene is favored over cis-2-butene and trans-2-butene, although there is some selectivity to the 2-butenes when VOx/ZrO2 behavior is evident. At low Zr loadings, butadiene formed during reaction acts as the diene species in a Diels–Alder reaction and gives rise to a cyclic compound that undergoes further dehydrogenation to produce benzaldehyde.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.