The fundamental aspects of the manufacturing of gold nanoparticles (AuNPs) are discussed in this review. In particular, attention is devoted to the development of a simple and versatile method for the preparation of these nanoparticles. Eco-friendly synthetic routes, such as wet chemistry and biosynthesis with the aid of polymers, are of particular interest. Polymers can act as reducing and/or capping agents, or as soft templates leading to hybrid nanomaterials. This methodology allows control of the synthesis and stability of nanomaterials with novel properties. Thus, this review focus on a fundamental study of AuNPs properties and different techniques to characterize them, e.g., Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), UV-Visible spectroscopy, Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy, Small-angle X-Ray Scattering (SAXS), and rheology. Recently, AuNPs obtained by “green” synthesis have been applied in catalysis, in medicine, and as antibacterials, sensors, among others.
Photothermal tumor ablation might be carried out with multibranched gold nanoparticles (MBAuNPs) having maximum absorbance (Amax) in the infrared region and functionalized with ligands that would bind them to the target tumor markers. However, in nanomedicine applications, the nanostructures must reach their target tissues to be effective, but the corona of serum proteins they instantaneously acquire when administered by intravenous injection may affect their activity; for this reason, we decided to analyze the effect that exposing MBAuNPs to bovine serum albumin (BSA) and human serum (HS) have on their protein corona and physical properties. The synthesized spherical Au seeds stoichiometrically generate piñata-like MBAuNPs of 8–20 peaks potentially useful for photothermal tumor ablation since they induce hyperthermia of more than 4 °C in phantom gels mimicking the skin irradiated with an 808 nm laser at 0.75 W/cm2. The calculated surface area of MBAuNPs ranges from 24 984 nm2 to 40 669 nm2, depending on the number of peaks we use for modeling the NPs. When MBAuNPs are exposed to BSA, they acquire a protein corona with an internal “hard” portion composed by one or two layers of BSA containing ∼1000–4000 molecules covalently bound to their surface, and an external “soft” portion formed by agglomerated BSA molecules linked by non-covalent bonds. Functionalization with BSA decreases the tendency of MBAuNPs to agglomerate and increases their size dispersion. MBAuNPs and MBAuNPs–BSA exposed to HS bind HS albumin and other HS proteins ranging from 25 kDa to 180 kDa that increase their hydrodynamic diameter and decrease their stability. We conclude that MBAuNPs exposed to serum albumin and HS instantaneously acquire a hard and soft protein corona that may affect prior or subsequent functionalization aiming to direct them to specific cell or tissue targets.
No abstract
In this work, the study and comparison of the authentication of raicilla and tequila were investigated, using linear voltammetry, in which a copper electrode was used as a working electrode. It was found that for both alcoholic beverages the oxidation potentials are at a potential of -0.12 to -0.8 V and from -0.19 to -0.8 V (vs. Ag/AgCl) for tequila and raicilla correspondingly. The oxidation potentials found were explained in terms of the oxidation of the alcohols present in these beverages on the copper electrode, described in terms of the Fleischmann mechanism. On the other hand, the peak current in the tequila and the raicilla was analyzed according to the classification. In this sense, it was found that despite being of the same type of classification but of a different brand of tequila or raicilla, the peak current was different. This was explained in terms of the difference found during the production process and the agave used in each brand of tequila or raicilla.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.