Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis, although the mechanisms by which bacterial translocation occurs remain largely unknown. We hypothesized that bacterial translocation across the intact barrier occurs after internalization of the bacteria by enterocytes in a process resembling phagocytosis and that TLR4 is required for this process. We now show that FcγRIIa-transfected enterocytes can internalize IgG-opsonized erythrocytes into actin-rich cups, confirming that these enterocytes have the molecular machinery required for phagocytosis. We further show that enterocytes can internalize Escherichia coli into phagosomes, that the bacteria remain viable intracellularly, and that TLR4 is required for this process to occur. TLR4 signaling was found to be necessary and sufficient for phagocytosis by epithelial cells, because IEC-6 intestinal epithelial cells were able to internalize LPS-coated, but not uncoated, latex particles and because MD2/TLR4-transfected human endothelial kidney (HEK)-293 cells acquired the capacity to internalize E. coli, whereas nontransfected HEK-293 cells and HEK-293 cells transfected with dominant-negative TLR4 bearing a P712H mutation did not. LPS did not induce membrane ruffling or macropinocytosis in enterocytes, excluding their role in bacterial internalization. Strikingly, the internalization of Gram-negative bacteria into enterocytes in vivo and the translocation of bacteria across the intestinal epithelium to mesenteric lymph nodes were significantly greater in wild-type mice as compared with mice having mutations in TLR4. These data suggest a novel mechanism by which bacterial translocation occurs and suggest a critical role for TLR4 in the phagocytosis of bacteria by enterocytes in this process.
Intestinal barrier dysfunction occurs following hemorrhagic shock and resuscitation (HS/R). High-mobility group B1 (HMGB1) has been shown to increase the permeability of Caco-2 human enterocyte-like epithelial monolayers in vitro. In this study, we found that serum concentrations of HMGB1 were higher in blood samples obtained from 25 trauma victims with hemorrhagic shock than in 9 normal volunteers. We also studied whether treatment with anti-HMGB1 antibody can ameliorate HS/R-induced gut barrier dysfunction in mice. Animals were shocked by withdrawal of blood to maintain mean arterial pressure at 25 to 30 mmHg for 2 h. After resuscitation with shed blood plus Ringer's lactate solution, the mice were treated with either anti-HMGB1 antibody or nonimmune rabbit IgG. Serum HMGB1 concentrations were significantly higher in trauma victims than control mice. Treatment with anti-HMGB1 antibody improved survival at 24 h and ameliorated the development of ileal mucosal hyperpermeability to FITC-labeled dextran. At 24 h after HS/R, treatment with anti-HMGB1 antibody decreased bacterial translocation to mesenteric lymph nodes and was associated with lower circulating concentrations of IL-6 and IL-10. These data support the notion that HMGB1 is a mediator of HS/R-induced gut barrier dysfunction and suggest that anti-HMGB1 antibodies warrant further evaluation as a therapeutic to ameliorate the morbidity of HS/R in trauma patients.
PW is an inventor of patent applications (WO/2010/120726 and 61/881.798) covering the fundamental concept of targeting cold-inducible RNAbinding protein for the treatment of inflammatory diseases, licensed by TheraSource LLC. PW is a cofounder of TheraSource LLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.